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Abstract

It is claimed that an accelerated expansion era drove the universe to near flatness, ho-
mogeneity and isotropy on large scales and stretched quantum fluctuations to today’s
large scale structure. Many models have been developed in the past decades and the
predictions made by inflation have been validated by cosmological measurements. In
this thesis we will begin with its motivation and development. We will see that the
theory (class) of inflation suffers from major problems. In the second part we dis-
cuss the perturbative non-renormalisability of gravity, the asymptotic safety scenario
and its renormalisation group treatment. Finally, we will explore whether and how
inflation can be made safe.
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Chapter 1

Introduction

And if inflation is wrong, then God missed a good trick. But, of course,
we’ve come across a lot of other good tricks that nature has decided not
to use.

(Jim Peebles — Princeton,1994)

1.1 Background and Aim of This Thesis

It has been assumed and validated that the Universe began in the Big Bang and ex-
panded ever since. In the very early universe inflation, an accelerated expansion, is
claimed to have happened. Whereas standard Big Bang can’t explain the cosmological
problems (horizon, flatness, monopoles) the theory of inflation claims to have solved
these issues [23]. We will see that the shrinking Hubble sphere during inflation and
the enormous expansion in form of repulsive gravity play an important role. More-
over, it provides a mechanism how the early quantum fluctuations turned into the
large scale structure today. Flatness, homogeneity and isotropy on large scales with
small anisotropies have been confirmed in precise testings such as in the Planck mea-
surements of the CMB. A vast amount of models have been put forward. From false
vacuum decay of Guth original idea, over standard slow-roll models to R2 inflation
[75] where the yet unknown scalar field arises because of the additional degree of
freedom in the Lagrangian.
However, as much as inflation has been successful, both theoretically and experimen-
tally, we shouldn’t forget that it is only a theory or as we will see rather a framework, a
class of theories. Criticism has been put forward because of its inconsistency in theory
and observations, its need for fine-tuning itself (what it should actually solve), the lack
of an explanation for the mechanism and origin of inflation, the measure and unlike-
liness problem and the loss of predictivity in the eternal universe/multiverse scenario
to name a few [3]. Alternative theories have been developed e.g. by the recent Nobel
laureate Penrose [54].
Inflation should take place at very early times and high energies suggesting that along
the quest for inflation a theory of quantum gravity should be found which is indis-
putable one of the biggest challenges in theoretical physics today. General relativity is
perturbatively non-renormalisable [92][70] if we go to high energies. Its origin lies in

10



the negative dimensionality of Newton’s constant. Higher derivative gravity theories
were introduced for cosmological reasons and for also these purposes including Stelle’s
quadratic gravity [79][78] which he showed is renormalisable but non-unitarity. We
would like to have a renormalisable, unitary and physical theory of quantum gravity
that is predictive at all scales. Such a theory might help to solve the issues with infla-
tion, the universe’s (and inflation’s) initial conditions (or its need at all).
A promising candidate is asymptotic safety which renders gravity non-perturbatively
renormalisable if a non-interacting fixed point in the UV with finite number of UV at-
tractive directions exists. From QFTs we know that observables depend o the scale we
measure them. First put forward by Weinberg [85] there is now a growing commu-
nity working on this approach. Functional renormalisation group flow (FRGE) was
developed including the exact treatment with the help of the Wetterich equation [87]
and applied to gravity in the so-called Einstein Hilbert truncation which depends on
the running and dimensionless couplings of the corresponding dimensionful Newton
constant G and Λ that accounts for the late time acceleration [64]. Further work was
produced with higher derivative truncations including the one introduced by Stelle.
Combining perturbative and non-perturbative treatment of those theories might pro-
vide a platform to analyse inflation. Additionally, in classical inflation a new scalar
field of unknown origin - so far we only know the Higgs scalar - is introduced. It
would be a major result if it turns out that inflation is a quantum gravitational effect
only. This emphasises the search for theories in the asymptotic safety scenario that
naturally produce inflation meaning a state of accelerated expansion thereby solving
the cosmological and apparent fine-tuning problems and connect the early with the
late time behaviour.
In this thesis I will connect results from standard cosmology and general relativity
(GR) including different inflation models, higher derivative (HD) theories and asymp-
totic safety (AS) and its renormalisation group (RG) treatment. I start by motivating
the need for inflation including the cosmological principle; the horizon, flatness and
monopole problem and the large scale structure in 2. A short introduction to asymp-
totic safety will be given as well. I proceed by a treatment of the underlying physics
which includes the model-independent theory, presentation of different models, ob-
servational evidence in terms of perturbations and thereby answering how inflation
began and ended and its importance in the universe’s evolution 3. I give some ex-
tension and alternative theories as well as a connection to dark energy. Then, I will
evaluate the problems inflation doesn’t solve and discuss the ones that newly arise 4.
Finally, I will give an introduction to the AS scenario, its FRG treatment, how it has
been applied to inflation so far 5 and conclude 6.
Along I will give some digressions that in my opinion should be emphasised in the
context of inflation and AS with my own calculations and detailed explanations of in-
vestigations that aren’t typically treated during the analysis of inflation. See also 6.2.

Can inflation be made safe?

In the following is a brief overview of the development of inflation and asymptotic
safety. In fact, its proper treatment both started around the same time, 40 years ago.
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1.2 History of Inflation (and Asymptotic Safety)

Einstein’s GR describes the evolution of the universe in physical laws1915

de Sitter derives an expanding universe driven by vacuum energy1917

Friedmann’s equations describe expanding&collapsing models1922

Hubble observes the expansion (redshift of galaxies)1929

Milne postulates the cosmological principle1933

Gamov describes the initial state as Big Bang fol-
lowed by nucleosynthesis and predicts the CMB1946

Dicke says that gravity and EM must be fine-tuned
for life to exist (first form of the anthropic principle)1961

Penzias and Wilson at Bell labs discover the CMB1965

the horizon and flatness problems are postulated1969

Weinberg’s RG flow for gravity1976

Starobinsky’s first idea of ’inflation’
Weinberg’s Asymptotic Safety1979

Stelle proves the renormalisability of quadratic gravity1977

Guth proposes the idea of old inflation
Mukhanov proposes perturbations as seeds for the LSS1981

Linde and Albrecht&Steinhardt propose new
inflation as solution for the exit problem1982

Nuffield Workshop: perturbations are investigated1982

Linde proposes chaotic inflation1983

Linde and Steinhardt develop the (eternal) chaotic universe1986

COBE satellite gives the nearly scale-invariant spectra T anisotropies1992

Wetterich equation1993

Hubble Deep Field proves the cosmological principle1996

Reuter calculates the flow equations for the gravitational field1998

AS applications in cosmology2000

WMAP - CMB and ΛCDM model2003
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Planck release to test anisotropies2009

Higgs particle detected (Higgs=inflaton?)2012

BICEP2: B modes detected – false alarm2014

LIGO: gravitational waves detected2015

scalar-to-tensor ratio is almost 02018

crisis of cosmologya

aThe universe is expanding much faster than thought (see 3.7), some theoretical
evidence suggests that it should even slow down. Hubble measurements don’t coin-
cide (global/early times vs local/late times give different values). Observations that
should help to calculate average distributions of hidden matter/energy forms shows
clumps that are almost 10% thinner than predicted.

2020

In the beginning of inflation’s developments a lot of simultaneous research was
conducted in the US and the Soviet Union. Unfortunately, international communi-
cation was not always supported. For a historical introduction into the underlying
problems of this thesis, 7.5.

1.3 Conventions

Metric signature (´,+,+,+)
 h = c = 1
m2
p = G´1

with values of
c = 299792450m

s , G = 6.674 ¨ 10´11 m3

kg s ,  h = 1.055 ¨ 10´34Js, kB = 1.38 ¨ 10´23 J
K

1Mpc = 3.1ˆ 1021m = 3.3 ¨ 106 light years

Many calculations and digressions can be found in the appendix 7 to improve the
reading flow, but may be read along the introduction as well.
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Chapter 2

Motivation

The ability to understand something before it’s observed is at the heart of
scientific thinking.

(C. Rovelli — The Order of Time)

In the following I will present the major cosmological problems that led to the idea of
inflation.

Figure 2.1: CMB 2018 Planck, apod.nasa.gov/apod/ap180722.html

2.1 Cosmological Principle

The Cosmological Principle (Milne, 1933) states that no observer occupies a special
place in the universe (Copernican Principle). It is based on two principles of spatial
invariance. The universe is homogeneous and isotropic on large distances. This means
that the universe looks the same at each point (isomorphic under translation g(~r) =
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g(~r+ ~r 1) and in all directions (isomorphic under rotation g(~r) = g(|~r|)), respectively.1

Both have been tested and well validated by observations of the cosmic background
radiation, the Hubble law and finally inflation. Furthermore, it is based on the hot Big
Bang model 7.1 and the Weyl postulate. The former is described in detail along with
the cosmological standard model and a brief timeline of the universe in the appendix.
According to the Weyl postulate the world lines of galaxies, which we will take as test
particles on galactic scales, represent a 3-bundle of geodesics that are orthogonal to
spacelike hypersurfaces and don’t intersect [51]. Hence, geodesics on which galaxies
travel cannot intersect and this puts further constraints on the metric. It is also part
of the cosmological standard model, 7.3.
Why is the CMB (cosmic microwave background) uniform in all directions in 1

105 parts?

2.2 Horizon Problem

Figure 2.2: Horizon problem [12] past light
cone from today and initial light cone from the
Big Bang don’t meet at recombination.

The horizon problem, also called the ho-
mogeneity problem, covers the fact that
today the universe is homogeneous on
large scales. The CMB, that captures the
photons that have been travelling since
the time of recombination, shows a tem-
perature of 2.7 ˘ 10´5K „ ´270˝C 2.
The radiation from opposite sides of the
observable universe today is almost the
same indicated by the same temperature
which can be extrapolated to same fluc-
tuations. However, the different regions
weren’t able to communicate with each
other, there is a much larger portion of
the universe observable today than at the
time of recombination. How is it pos-
sible that causally unconnected regions
have the same properties (temperature)
if there was no time for thermal equilib-
rium?
Precisely, the comoving radius today is
much larger than the comoving radius of
causally connected parts at the time of recombination:

ż trec

0

dt

a(t)
"

ż t0

trec

dt

a(t)
(2.1)

With the right conditions on matter (radiation dominates after recombination time, see

appendix) the former scales as 3t
2
3
0 t

1
3
rec whereas the latter scales like 3t0(1 ´ (trec

t0
)

1
3 ).

1Note the principles don’t imply one another. For example, a magnetic field can be homogeneous,
but not necessarily isotropic. Spherical symmetry implies isotropy, but not necessarily homogeneity. If,
however, isotropy can be found at every point, then homogeneity follows [40].

2Compared to Hyde Park lake this would be a ripple of a height of 10´2mm.
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Written in that way [12] it is clear that at the time of recombination the comoving
radius of the photons doesn’t match with the comoving forward light cone. Our past
horizon at recombination is larger than the forward light cone originating from the Big
Bang. The uniformity must be postulated in the initial conditions to eliminate many
causally unconnected regions with the same properties (see appendix 7.7.1, 7.7.5).
Along with the horizon problem often the inhomogeneity problem and the issue of en-
tropy is mentioned. Whereas the CMB is quite homogeneous, it does show anisotropies
and we are well aware of the fact that galaxy formation was possible. As we will see
there seems to be an imposed natural bound on the initial entropy which makes the
universe very special with a one in e10122

.

2.3 Flatness Problem

Figure 2.3: Flatness problem, Ω = 1 is very
unstable. In order to have spatial flatness to-
day,Ω had to be very close to 1 from the begin-
ning onwards (astro.umd.edu 2015 class23)

The flatness problem is another fine-
tuning problem. Why is the universe
(nearly) flat, especially if one considers
that this flatness is not a generic condi-
tion? A flat universe is characterised by
the fact that it just has the right amount
of matter and energy that it continues to
expand and doesn’t re-collapse - its den-
sity is near the critical density ρc 7.3.
Its ratio of today’s density and the criti-
cal density Ω0 has been accurately mea-
sured to be almost unity. Considering
standard Big Bang theory and the Fried-
mann equation 7.3 we can show that Ω
shifts away from unity during the expan-
sion of the universe.

|Ω´ 1| =

∣∣∣∣ρ(t)´ ρcρc

∣∣∣∣ = 1
ȧ2(t)

(2.2)

At early times it had to be extremely small in the beginning, ρ has to be very close to ρc.
To be precise, the unity ofΩ is unstable. As it is shown in the appendix 7.3 a2H2 9 t´1

for radiation and a2H2 9 t´
2
3 for matter such that for both contents |Ωtot ´ 1| scales

like t and t
2
3 , increasing functions, respectively. The universe must have been flat

from the beginning onwards. The deviation from unity above can also be rewritten as
k

a2

H2 giving basically the ratio of the radius of curvature and the Hubble radius which
obviously shows that Ω = 1 is an unstable state in the hot Big Bang model.
To quantify the deviation3 we can specify α = ρ´ρc

ρc
via its evolution α̇ = ρ̇

ρc
´
ρρ̇c
ρ2
c

with ρ̇c = 3HḢ
4πG = 3

4πG
ȧ
a
( ä
a
´ H2) substituting the second Friedmann equation, using

H2 = 8πGρc
3 and substituting it back into the original equations gives

α̇ = ´
3ȧ
a
(1 +w)

ρ

ρc
+
ρ ȧ

ρc a

(
ρ

ρc
(1 + 3w) + 2

)
= α(α+ 1)

ȧ

a
(1 + 3w) (2.3)

3This was given as an exercise in the R&C class by Magueijo.
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Hence, α̇ positive4. Here I already used the equation of state p = wρ, where ẇ = 0.
For matter it increases with α(1 + α) ȧ

a
and for radiation even double the speed - α

is proportional to a2 for radiation and proportional to a for matter. If α = 1 today,
then it should be smaller than 10´64 at Planck time. Where does this small fine-tuning
come from? α = 0 clearly is an unstable point.
The entropy problem is often mentioned in addition to the flatness problem as well.
How is it possible that such a large entropy and mass was formed?

2.4 Monopole Problem

Sometimes forgotten, but equally important, the monopole problem was the first
treated problem in Guth’s discovery of inflation and lies on the intersection of cosmol-
ogy and particle physics. Hence, I will give a deeper introduction here. Monopoles are
stable point-like defects in the (Higgs)field5, just like domain walls are two-dimensional
topological defects. The field points radially away from the defect having magnetic
field configurations at infinity, far away from its centre the field approaches a spe-
cific value that can be calculated via gauge transformation. Simply spoken, they are
objects with net magnetic charge6. At early times the universe must be described by
particle physics. As the universe cools down symmetry breaking is predicted. In all
grand unified models there is a gauge group G valid at high energies, at lower energies
spontaneous symmetry breaking (SSB) occurs [23] G Ñ Hn Ñ ... Ñ H0

7. During
this phase transition those monopoles, predicted to be very heavy, formed at the criti-
cal temperature Tc „ 1015GeV (Weinberg). This can already be seen by the fact that
any GU model predicts quantised electrical charge as the U(1) group is embedded in
a simple group that will be spontaneously broken, magnetic monopole production is
the consequence [29][57]. The calculated number of monopoles would exceed all
other matter forms, but still has never been observed (for a detailed calculation see
appendix, 7.7.3). The universe’s mean density would exceed its current density of
many orders.
Can a theory of inflation solve that problem? Furthermore, monopoles must have
been formed when the universe was very hot, so their production should have af-
fected further dynamics, for example, the production of baryons. Even without the
experimental evidence of monopoles themselves, which we would never be able to
directly observe at such high masses, we should be able to see some kind of traces in
the early dynamics and its effect nowadays. For a precise calculation of the mass and
number of monopoles please have a look in the appendix.
Further relics occurring in the standard hot Big Bang model and symmetry breaking

4If the strong energy condition is assumed, 1+ 3w ą 0. We will see that inflation eliminates this by
postulating 1 + 3w ă 0, see also 7.3.2.

5In the literature the Higgs field is often set equal to the inflaton field, which hasn’t been proven yet.
However, as long as one follows general GUT symmetry breaking the field doesn’t need to be specified.

6Very massive particles with magnetic charge were already introduced by Dirac in 1931. He tried to
establish a symmetry between electric and magnetic charge. He showed that the existence of magnetic
monopoles imply quantisation of the electric charge: g = n

2e [14]
7Today’s favourite is Georgs-Glashow model with G = SU(5) resulting in SU(3)xSU(2)xU(1), the

strong and electroweak forces. The standard model of particle physics doesn’t include gravity.
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are yet unobserved in forms of superheavy domain walls (Zeldovich, 1974). More-
over, according to N=1 supergravity theories the number density of gravitinos should
be much higher than observations indicate (Ellis, 1982).

2.5 Large Scale Structure

The Large Scale Structure (LSS) of the universe is often not given as a problem of
the standard Big Bang theory. Where does the universe’s structure come from? It
is well known that galaxies locally cluster on orders of 100Mpc. The clusters them-
selves arrange in super clusters with large voids in between. The universe is not only
homogeneous, but also has irregularities. The anisotropies in the CMB observed by
the COBE satellite are proof for the seeds of formation at the time of decoupling. It is
assumed that those seeds are quantum fluctuations resulting in primordial density per-
turbations and finally the large scale structure today. However, the Big Bang doesn’t
provide any explanation for such a mechanism of any initial perturbations. The LSS
is one of the most important and observed physics in astronomy. More details can be
found in the section on observations 3.5. Worth mentioning here is that the observed
parameters are quite fine-tuned such that matter and in the end life is actually possi-
ble. Is there a reason why they have their specific values (Hubble constant/expansion
rate, critical density etc)?

An overview on the general Big Bang model, its predictions and measurements can
be found in 7.1 including a time line 7.1 and an explanation of the CSM 7.3 in detail
as well as a short intro to scalar fields in cosmology 7.4.

2.6 The Need for Quantum Gravity (?)

As just mentioned the need for quantum fluctuations at the beginning of the universe
as seeds for the macroscopic universe described by general relativity (GR) already
suggests that a theory of quantum gravity is needed 7.12. Inflation takes place at
very high energies/temperatures, energies higher than we are able to test with the
help of accelerators. As it turns out gravity is perturbatively non-renormalisable at
high energies. The gravitational constant is dimensionful, it has a negative canonical
mass dimension of 2. In the standard model of particle physics we are usually used to
dimensionless couplings. We will see that this issue is resolved by introducing a scale
dependent running towards a finite value. The problems above go along with the issue
of initial conditions that seem to be very carefully chosen such that ’our’ universe was
possible to form. There is also a large difference of orders between the macro- and
micro scale, 7.2.

2.6.1 Asymptotic Safety

As inflation is a magnifying glass of the universe at early times we will see that scale
invariance is an important property of inflation. This already suggests using some
form of scale invariance as symmetry principle. We will see that AS is based on the
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non-perturbative study of renormalisation group flows where a non-interacting fixed
point (NGFP) exits in the UV making the underlying theory predictive at all scales,
even near the Big Bang. The UV completion of the theory such as gravity is done by
finding a trajectory that is attracted towards the UV fixed point (from now on simply
called FP), the cutoff (both IR and UV as will see) can be safely removed and we end
up with finite couplings of a finite dimensional critical hypersurface which means that
we also only need to measure a finite number of parameters only. We already know
QCD as being asymptotically free at high energies i.e. the couplings vanish in the UV
(a so-called Gaussian fixed point, GFP). We expect that gravity is asymptotically safe,
attaining the NGFP at HE.
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Chapter 3

Physics of Inflation

SPECTACULAR REALIZATION

(Alan Guth — SLAC, Dec. 7 1979)

3.1 Theory

One can quickly see that the idea of an accelerating expansion might be able to solve
the aforementioned problems. Intuitively, It can smooth out any irregularities in the
beginning and flatten the universe by stretching any initial curvature.
Before going into detail, the requirement of ä ą 0 Ø d

dt
ȧ ą 0 Ø d

dt
(aH) ą 0 drives

Ωtot to unity. Similarly, the expansion can join light cones.
Inflation is the rapid/accelerated expansion in the early universe and should provide
an explanation for the initial conditions and today’s LSS. Thus, inflation solves the just
mentioned cosmological problems. It should explain the homogeneity and isotropy as
well as give a platform for primordial fluctuations resulting in today’s structure. In
the normal cosmological evolution the Hubble radius would grow and so would the
distance between objects that should have been in causal contact. Hence, the most
obvious solution is that today’s Hubble radius is smaller than the one at the time of
recombination (whose evidence we have in the CMB). As we will see, if the increase
in Hubble radius was behind the speed of expansion, the issue is resolved.
Inflation has developed into a general framework and has been achieved in many
different models. In the following, I will first choose a model-independent approach.
First, I will assume that such a rapid expansion is possible and investigate how it solves
the problems and what constraints are given by the cosmological problems. Then, I
will take a deeper look into the possible dynamics and origin of such a behaviour. I will
proceed with the theory of perturbations and observational evidence. Finally, some
alternative theories and extensions of inflation are given.

3.2 How to Inflate - Constraints on Inflation

In order to inflate a repulsive form of gravity is needed. Taking a look at Einstein’s
equations gives p = ´ρ as immediate possibility. Following the weak energy condition
ρ ě 0 (7.3.2) we find a non-positive pressure. In the following subsections we will

20



investigate the constraints on inflation and how it solves the problems mentioned in
the motivational part.

3.2.1 Horizon and Flatness Problem as First Constraints

Taking the horizon and flatness problem as first constraints on inflation we conclude
that a smoothing fluid component is needed 1. As previously mentioned the Friedmann
equation

H2 =
8π

3m2
p

(ρr
a4

+
ρm

a3
+ ...

)
´
k

a2
(3.1)

can be rewritten as

k = 0 Ñ 1 = Ωtot,k = ˘1 Ñ |1´Ωtot| =
1

a2H2
(3.2)

This gives a ratio of
|1´Ωtot|today

|1´Ωtot|initial

=
ȧ2

initial

ȧ2
today

" 1 (3.3)

Figure 3.1: Horizon
problem, is solved. Upper:
temporal evolution of the
physical length (blue)
vs Hubble radius (red).
Lower: temporal evolution
of the same, but comoving
scales. During Inflation the
Hubble radius is behind the
growing a, structures ini-
tially inside it grow beyond
that. Lidde’s lectures(ned.
ipac.caltech.edu/
level5/Liddle)

If we add a component to the RHS of the Friedmann equa-
tion that dominates it is possible to eliminate this problem:
+ ρs
a2ε , where ε is the equation of state parameter depend-

ing on the matter content ε = 3
2(1 +w). For ε ă 1 this is

possible.
The constraint on the elimination of the horizon problem
gives the amount of inflation needed. The observed hori-
zon at initial time robs(ti) =

robst0ai
a0

can be approximated
with robs „

1
H0

„ t0, robs(ti) „
t0ai
a0

. If a(t) „ 1
tε

the

causal horizon at initial time is rcausal(ti) = a(ti)
şti

0
dt
a(t)

„
ε
ε´1ti Hence, the ratio is

robs(ti)

rcausal(ti)
„
ε´ 1
ε

ai

a0

t0

ti
„
ε´ 1
ε

ai

a0
(3.4)

If a(t) „ 1
T

taken again as before we arrive at
(1015GeV

1013GeV)
ε´1 „ 1028(ε´1) „ e60(ε´1) Following this method

we basically arrive at the slow-roll (SR) conditions, in de-
tail explained in the next subsection. In SR the pressure as
difference of kinetic and potential energy is the negative
value of the density, the sum of both 2. Thus, potential en-
ergy dominates over kinetic energy. The amount of inflation
needed is given by the condition

af

a0

Hinf

H0
ď eN (3.5)

1The following derivation is oriented towards A. Ijjas’
talk on Cosmic Inflation at Harvard University, 2014.

2For a short intro to scalar fields in cosmology see 7.4.
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which is the ratio of our horizon and the physical horizon
at the end of inflation. Assuming that the temperature be-
haves antiproportional to a, H behaves like „ T 2. Solving
for N gives

N ě ln
(
Tf

T0

)
„ 66 (3.6)

at an energy of say the GUT scale„ 1016GeV „ 106J. This gives a final temperature of
„ 1029K (obviously this is rather simplified, a proper calculation will be done in 3.4.1,
but as an estimation this is viable). Hence, 66 e-folds would be needed in order for
inflation to occur sufficiently long. A further insight is given in the section on slow-roll.
In the literature one usually sets the number of e-folds at horizon crossing („ end of
inflation) to 50 ă N˚ ă 65.
A useful concept is the comoving Hubble length, 1

aH
, which is the distance over which

communication between two points in space today is possible (whereas the particle
horizon or comoving horizon can identify whether they were in causal contact at some
point in time, 7.28). The condition for inflation can be rewritten as

0 ą
ä

ȧ2
=
d

dt

(
1
ȧ

)
=
d

dt

(
1
aH

)
(3.7)

The solution to the horizon problem is then to reduce the comoving Hubble length
(aH)´1 far below the particle horizon today - different regions cannot be in causal
contact today, but were able to communicate at early times. Important to mention
is that inflation does not violate relativity since spacetime itself is expanding (i.e. no
information is being transferred).
This condition 3.7 also explains the flatness today as it drives |Ω´ 1| to 0.
Before introducing the SR model, we can define inflation via

Condition for inflation-model independent

1. ä ą 0 - accelerating expansion

2. ˙( 1
aH

)
ă 0 - decreasing comoving Hubble length

3. ρ+ 3p ă 0 - repulsive form of gravity

3.2.2 Slow-Roll Condition

The slow-roll condition postulates that the potential energy dominates over the kinetic
energy. Hence, V dominates over φ̇2. The Hubble evolution equation further validates
this claim. Differentiate the first Friedmann equation 7.11 with respect to time and
substitute in the scalar field and perfect fluid expressions for the density and pressure:
´ Ḣ

4πG = ρ+ p = ´φ̇2. Inflation means accelerated expansion, the scale factor scales
like a(t)9eHt, so H = ˙lna must be constant. Thus, φ̇2 Ñ 0.

H2 =
8πG

3

(
V(φ) +

1
2
φ

)
Ñ H2 =

8πG
3
V(φ) (3.8)
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Using the scalar field action described in the appendix and FRW cosmology one obtains
the equation of motion (eom):

φ̈+ 3Hφ̇ = ´V 1 Ñ 3Hφ̇ = ´V 1 (3.9)

The slow-roll parameters quantify inflation and are defined as

ε = ´
Ḣ

H2
and η =

1
H

ε̇

ε
(3.10)

independent of the inflaton choice. In terms of a potential it can be rewritten (see
appendix, ??) as

ε =
1

16πG

(
V 1

V

)2

and η =
1

8πG
V 2

V
(3.11)

Inflation takes place as long as ε ă 1, indicating the end of inflation when ε is unity.
It can be shown (??) ä ą 0 and a ą 0 iff ε ă 1.
As already shown previously inflation must be possible in the sense of its beginning and
a sufficient amount of it to solve the cosmological problems. As shown in the beginning
of the section the horizon problem needs a sufficient amount of e-folds, in the literature
about 60. It measures the folds yet to occur and is defined via dN = ´Hdt, along
with da

a
= Hdt and dt = dφ

φ̇
.

N(φ) = log
(
a(tf)

a(t)

)
=

ż tf

t

H(t 1)dt 1 =

ż φf

φ

H

φ̇
dφ „ 8π

ż φ

φf

V

V 1
dφ (3.12)

where the last approximation is done under slow-roll conditions and the boundary
condition is given by ε(φf) = 1, the final value of the field produces unity in epsilon,
inflation stops. ε is an important parameter 7.7.4 to investigate whether inflation is
possible and long enough (see also observations 3.5). In general, inflation under SR
condition is possible for ε, |η| ă 1.
Recall from the motivational part we can now write α = ε = 3

2(w + 1) = φ̇2

2H2 In
summary, inflation needs to begin, last long enough and end. Also, ε ă 1 gives
w ă ´1

3 again proving that the kinetic energy is dominated by the potential energy
?? and the ’abnormality’ of the matter type (note w = ´1 is the vacuum energy/dark
energy/cosmological constant 3.7).

3.2.3 LSS

Quantum/vacuum fluctuations of the inflaton and gravitational fields at the beginning
of inflation are the seeds for density fluctuations and the LSS nowadays. During in-
flation they became stretched to scales beyond the Hubble size. Clusters can be seen
on scales of galaxies, but even galaxies themselves cluster. A detailed explanation is
given later 3.5.1. Again, the Hubble radius grows much less than the physical scales
which makes it possible for quantum fluctuations to take scales beyond the Hubble
size - they become classical perturbations and ’freeze’. With the end of inflation they
can again be smaller than the Hubble size and make today’s structure.
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Figure 3.2: Slow-roll potentials that are possible. For SR single field inflation a flat long
plateau, linear potential Vi = V0 ´ cφi (a), a more generic potential with different regions
where on the saddles and maxima SR is possible (b), plateau with potential moving uphill
at φ ă 0 (c) and hilltop with potential moving down for φ ă 0 Vi = V0 ´

1
2m

2φ2
i (d).

’Multi-field inflation on the landscape’, 2009.

3.2.4 Monopole Problem

As it was shown we need an explanation why there is such a discrepancy between
prediction and observation. One could either enhance the annihilation process (Fry
1981) or suppress the initial production (Guth and Weinberg 1982), both of which
didn’t give satisfactory results. Magnetic monopoles might exist, but were produced
prior inflation. During the inflationary expansion the density dropped (exponentially)
which makes them undetectable today.
Precisely, take a „ tp for any p ą 1, then H „ t´1 „ a´

1
p and the density of the

universe behaves like a´
2
p . Matter density behaves like the scale factor cubed, a´3 -

the particles undergo a redshift up to a non-detectable state.
Other relics such as gravitinos or domain walls would equally be diluted. Worth men-
tioning here is that the reheating temperature (discussed in 3.4.1 ’end of inflation’)
needs to be low enough such that no new production can occur. Here inflation ob-
viously can only been seen as a solution if the corresponding theories behind those
particle physics predictions are true. In the problem section I will investigate whether
the solution of the monopole can been seen as a success of inflation.

3.3 Models of Inflation

The types of models of inflation occupy a huge range. Starting from false vacuum
decay, over the simple slow-roll and single scalar field model up to higher derivative
(HD) gravity theories. In order to understand why and where theoretical cosmologist
are heading nowadays, here is a short overview.
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3.3.1 De Sitter model

If one ignores the curvature term (often called the redshifting of the curvature since
the exponential expansion makes the term vanishing small3) in the first Friedmann
equation since the scale factor is rapidly increasing, one arrives at the simple differ-
ential equation

H2 =

(
ȧ

a

)2

=
8πGρ

3
(3.13)

with a solution of a(t) „ eHt where H is constant H =
b

8πGρ
3 as ρ is assumed to

be constant during inflation. Here the density is dominated by the vacuum energy,
ρ = ρΛ, and the universe would be driven to flatness (see also 7.6). However, its
further evolution would be emptiness. Since we live in a universe with matter and
radiation this model was disregarded. Inflation must stop at some point such that
reheating can take place. Similarly, one can introduce the cosmological constant in
the Einstein field equations and produce an accelerated expansion with ρ = p = 0
which gives a(t) 9 e

?
Λ
3 t. Weirdly, substituting this into the metric this gives after a

coordinate transformation actually a static universe (invariant under tÑ t 1 + t0 and
xi = e

?
Λ
3 t0xi). However, the static character is only local, globally it is evolving.

3.3.2 Old Inflation

Figure 3.3: Piston explanation, PS6 MIT
’The Early Universe’, Guth, 2011.

Despite its failure it is important to men-
tion the old inflation scenario as stepping
stone for inflationary cosmology. The
next step was to reduce the time of rapid
expansion such that matter could form.
Furthermore, the early universe must be
described by some quantum field the-
ory as well. The oldest idea of infla-
tion by Guth [23] is not based on slow-
roll conditions, but on a false vacuum
where the scalar field undergoes a first
order phase transition in the early uni-
verse combining both cosmological and
particle physics. Using a toy model of a
potential that has a metastable false vac-
uum - a temporary state where the field
has a high energy density - at φ = 0 and
a true vacuum (with the actual lowest energy state) at φ = a the field finds itself
in the true vacuum for T ă Tc. Classically the false vacuum is stable, but quantum
mechanically it can tunnel (locally!) to the true vacuum. The large negative pressure
makes it possible p = ´ρ = ´ρc2 =energy density. Inflation lasts as long as the decay
of the false vacuum lasts. Guth mentions a thought experiment [24] where a piston

3In fact, it can be shown that the behaviour of the equations with k = ˘1 does not differ too much
from the flat case.
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φ

V(φ)Old Inflation

φ

V(φ)New Inflation

Figure 3.4: Comparison between the old and new inflationary model. Former has a
local minimum as false vacuum, latter has a local maximum for which both quantum and
classical treatment is metastable.

is filled with the false vacuum with density ρf, outside is zero energy vacuum (even
the non-zero energy vacuum can be approximated to 0 in comparison to the large
pressure). When pulling out the piston a volume δV the density has to stay constant
- that is the difference to all other kind of substances, it is an intrinsic property of
the spacetime manifold that becomes stretched - such that energy conservation gives
dU = ρfdV = dW = ´pdV , one would pull against a suction due to the negative
pressure inside. His idea was that, after the decay of the false vacuum, the bubbles
when the cooling expansion happened would collide and coalesce to a homogeneous
universe (similar to the Coleman-Callan process, 1977). The bubble wall collisions
would make reheating possible and standard Big Bang would have followed. Guth
points out that due to the supercooling (Ñ false vacuum decay) in the early universe
the flatness and fine-tuning problem put forward by Dicke would be solved. Early on
Dicke claimed that the values of the constants in electromagnetism and gravity are
fine-tuned since a slight change wouldn’t allow our life to be possible (1961), see also
7.5. We now know that e.g. the small value of the cosmological constant makes LSS
formation possible.
The model suffers from the ad hoc construction and the ’graceful exit problem’. In or-
der for the field to be in the false vacuum in the beginning, finite temperature effects
are necessary. This is only possible if the field is in thermal equilibrium with the other
fields. The graceful exit problem makes it impossible for inflation to solve the homo-
geneity problem. The bubbles would nucleate after inflation with a size which would
be much smaller than the apparent horizon today (even if they moved at the speed of
light). They would cause large inhomogeneities inside the Hubble radius. Percolation
wasn’t possible due to the exponential expansion. Even if the rate of bubble formation
would have been much higher than the rate of expansion, the phase transition would
have been to fast and inflation wouldn’t have been able to occur.
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3.3.3 New Inflation

The solution was independently brought forward by Linde [37] and Albrecht and
Steinhardt [5]. The potential takes a more special form, the field is at a local maximum
at 0, so classically metastable. It also is a flat plateau such that slow-roll inflation is
actually possible. Inflation doesn’t end by a tunneling process, but by a second-order
phase transition, small fluctuations that build up and push the field down the true
vacuum. This happens in small regions „ 1

H
over which the fluctuations are uniform

and then stretched over a large scale during SR. It is assumed that the inflaton field
evolves very slowly from its initial state. Finite temperature effects confine the field
to the false vacuum for T ą Tc, fluctuations then destabilise the field to the true vac-
uum. In contrast to the old inflation model, the boundary walls are inflated outside
the present Hubble radius as the regions of homogeneity are established before infla-
tion. Near the centre the potential might be approximated by V(φ) „ V(0) ´ 1

4λφ
4,

it turns out that the inflaton has to be weakly coupled λ ăă 1. The origin of the very
small (fine-tuned) coupling constant is not known. One finds that the perturbations
(see later 3.5.1) 9 1

φ̇
- the potential has to be flat near the origin in order for SR to

occur.

3.3.4 Chaotic Inflation

But even here it is not really clear how inflation actually starts. How can a generic
universe inflate, a universe without any assumptions on the field’s potential? Linde’s
chaotic inflation [38] doesn’t restrict the form of the potential, a simple V 9 λφ4

in which the scalar field has a completely random state makes a quasi-exponential
expansion possible. Where the scalar field has the proper value with large negative
pressure φ(x) ąą 0, potential energy dominates and it begins to inflate and then
dominates the universe’s evolution. In some regions SR is possible (in fact, it was
proven that there exists a large class of possible inflation theories, where SR is possible
under ’natural’ conditions).4 The Hubble damping term in the equation of motion
slowly rolls down the scalar field to φ = 0 (similar to a harmonic oscillator). Most
of the theories are weakly coupled ones with exponential or polynomial potentials.
A detailed calculation can be found in the appendix, 7.7.4. Within the patch, the
evolution is independent of the rest5. The advantage of this model is that it does not
need a phase transition (i.e. no fine-tuning of temperature is needed), the inflaton is
displaced from its true vacuum state by some arbitrary mechanism (i.e. can give an
explanation for quantum and thermal fluctuations).

4This already hints towards the Anthropic Principle - the regions that we need for inflation to occur
are favoured.

5If we assume the exponential scaling the universe behaves de Sitter-like and one can calculate the
event horizon beyond which we cannot communicate. The event horizon, similar to the one of a black
hole, is a null hypersurface and can be calculated by looking at the future light cone of the observer’s
worldine with tÑ∞,

ż ∞
t0

dt

a(t)
„

ż ∞
t0

dt

eHt
=
e´Ht0

H
ă∞ (3.14)

for all k in fact. In our entire history we won’t ever be in causal contact with regions beyond that such
that also nothing outside can affect our evolution.
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This scenario still needs mild assumptions (flat potential). As I will show it might
explain the further reheating and evolution to the standard Big Bang theory. Inflation
ends when the vacuum energy has rolled down into the valley of the potential.

3.3.5 Eternal Inflation

Figure 3.5: Eternal universe, ’Infla-
tionary Models and Connections to
Particle Physics’, Guth, 2000.

The idea behind eternal inflation (Steinhardt,
Vilenkin 1983) is that the false vacuum decays,
but never vanishes completely. The exponential
expansion of the universe dominates the expo-
nential decay. 3.3.5 is a 1D sketch of the produc-
tion of local universes where one should imagine
that a(t) increases with each bar (here three times
the size, the false vacuum is always as big as the
first one). The false vacuum randomly decays and
each time a local Big Bang produces a pocket uni-
verse with completely different properties. This
goes on eternally and results in a fractal-like struc-
ture of the universe. We find ourselves back in our
universe as it exactly provides us the condition to

live (Anthropic Principle).

Eternal Chaotic Inflation

Combining both, eternal and chaotic inflation, Linde [39] (1986) explained the pro-
duction of the pocket universes with the help of a random walk6 of quantum fluctua-
tions (Vilenkin, 1982). The field makes Gaussian jumps in δt = H´1, δφquantum = H

2π .
This quantum fluctuation is superimposed on the classical motion of the field.
The problem of eternal inflation is the loss of predictivity and possibility of proba-
bility calculation. All kind of universes are possible: different symmetry breaking
types result in different low energy physics, different vacuum states and using higher-
dimensional Kaluza-Klein theories7 even gives different dimensions and they all de-
velop independently. Beyond our universe r ą 1

H
inhomogeneity dominates, we need

to be careful to distinguish between the local and global description of inflation.
Hawking and Hertog [28] proposed a solution for a smooth exit of eternal inflation.
Based on the no-boundary proposal 8, a gauge/gravity duality and Top-Down (3.6.2)
probability (’only observe a patch of the universe’) they made a well-defined exit pos-
sible. The duality between Euclidean AdS (Euclidean deformed S4) and Lorentzian
asymptotic de Sitter with inflation and cosmological constant is derived via the wave-
function of the universe approach 3.6.2. A detailed look regarding his last work is
beyond the scope of this thesis, but basically they found the complexified solutions

6A sample calculation can be found in the chapter on problems, probability and measure problem.
7Here domains in a d-dimensional universe can be squeezed or stretched to a tube of different

dimensions - independently of its former universe, when the initial energy density reaches its Planck
value and its length is bigger of order mp.

8The no-boundary proposal says that prior to the Big Bang time didn’t have a direction.

28



to Einstein’s field equations. Eternal inflation would then produce a regular universe,
even on larger scales.

Constraints for Eternity

According to Guth almost all inflation models are eternal. I will investigate its con-
straints on the chaotic model V = 1

2m
2φ2. I follow Guth approach [25] which leaves

out the side calculations and is applied to V = 1
4λφ

4. The fluctuation is the sum of
the classical and quantum fluctuations

δθ = δθcl + δθq (3.15)

The quantum fluctuation shows a Gaussian distribution of width H
2π . With the usual

approach of calculating correlation functions

x0| δφ̂2 |0y =
ż

d3~kd3~k 1

(2π)3
ei(

~k´~k 1)~x x0| δφkδφk 1 |0y

=

ż

dk

k

(
H

2π

)2

=

(
H

2π

)2

ln
k˚

ki
=

(
H

2π

)2

N

(3.16)

with k =
∣∣∣~k∣∣∣ and Hδt = N being the logarithmic ratio of the final and initial value

of the comoving wavenumber k (re-entering and entering of horizon crossing). The
derivation for the correlation function can be found in 3.5.1 which will be derived
later (see also 3.73). With vk = aδφk and in the superhorizon limit

x0| vkvk 1 |0y = (2π)3 1
2k

1
(kη)2

δ(~k´ ~k 1) = a2 x0| δφkδφk 1 |0y (3.17)

This gives a deviation for one e-fold of H2π . Now, quantum mechanics allows the poten-
tial to fluctuate up or down with some probability. During one e-fold in a Hubble time
interval∆t = 1

H
it expands exactly by the factor e, so the volume increases by e3 „ 20.

Thus, we have 20 comoving regions. In order to have at least one region further in-
flating we have a probability of 1

20 . Using a Gaussian distribution with 1σ standard
deviation the field’s mean value is exceeded by 0.159 such that we have on average
20 ¨ 0.159 „ 3.18 regions that oscillate up the potential (= positive value). Inflation
will not end in this case. Recall that this calculation is done for one e-fold only, there
will always be some regions where SR doesn’t stop and inflation continues. Guth then
says eternal inflation takes place if the standard deviation of the quantum fluctuation
is bigger than 0.61|δφcl| (e´0.5 „ 0.61) in order to have p ą 1

20 for the field to fluctu-

ate up the potential. As ă δφ ą= 0 and the classical fluctuation is φ̇clδt =
φ̇cl
H

(see
3.7, the field should be in the green area). This gives with substituting SR condition

c

2GV
3π

„
H

2π
ą 0.61

∣∣∣∣φ̇cl

H

∣∣∣∣ (3.18)

This gives in Planck units the conditions

H2∣∣φ̇cl

∣∣ ą 3.8
19
m3
p

ą
V 1

V
3
2

&
4V
m4
p

ą ε (3.19)
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for the quadratic chaotic potential a value of V ą 2 ¨ 10´8m4
p. This is far below the

Planck scale and hence the condition is quite probable. Similarly, Guth gives a value
for V ą 0.079λ

1
3 , with a approximated coupling of 10´10 in order for inflation to occur

long enough which is below the Planck scale as well.

3.3.6 Starobinsky Inflation

Already in 1979 Straobinsky had the the first idea of inflation (without using its
name)9. He proposed a quantum state in the beginning and how it would produce
gravitational waves that would be detectable today. Before the classical Friedmann
expansion he assumed an exponential expansion (a = eHt), an inflationary de Sitter
era. The universe would have been in a maximally symmetric state.
Later, the Starobinsky or R2 inflation was developed. It is an example for an f(R) the-
ory meaning that the usual Einstein-Hilbert Lagrangian has an additional term in R2

which should dominate its behaviour in early times (=large curvatures). Hence, its
theory is a modification of GR and quantum corrections of the early universe should
be described in the additional curvature term. As already shown, domination of cur-
vature can act as an effective source for inflation. The theory’s predictions are very
close to data with only one free parameter that is defined by the primordial spectrum.
The action is given as

S =
1

16πG

ż

d4x
?
´g(R+ BR2) (3.20)

with the parameter B = ´ 1
6m2 and for later reference I include the gravitational

constant, where m is the mass of the associated scalar field (see below). Precisely,
Starobinsky[75] tried to solve the singularity problem by postulating that the universe
spent an infinite time in a de Sitter state without a singularity prior. Here he made use
of the exact one loop approximation of quantum corrections to gravity (without mat-
ter). Inflation ends with a graceful exit to the usual Friedmann expansion. According
to the Starobinsky the initial state was so dense that we should still be able to observe
gravitational waves from back then.
The theory gives clear and simple predictions for the spectral index and scalar-to-
tensor depending on the number of e-folds only which will be described and derived
later[20].

ns = 1´
2
N

r =
12
N2

(3.21)

This gives the motivation of further higher derivative gravity research as well as looking
at this inflation model in other settings such as asymptotic safety.

From the Lagrangian to the Potential

In the f(R) theory the usual Lagrangian „ R is substituted by a function of the curva-
ture scalar, f(R) = R+α1R

2+α2R
3 etc. The reason why I want to derive the following

is to emphasise the beauty of higher derivative (HD) theory. Firstly, Einstein-Hilbert
is non-renormalisable at higher energies10 and terms will lead to higher derivative

9’Spectrum of relict gravitational radiation and the early state of the universe’, 1979
10I will investigate this issue in the chapter on asymptotic safety.
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terms in the equation of motion. Secondly, the first ideas on additional terms in the
Lagrangian were based on the wish of producing vacuum polarisation effects in a ’nat-
ural’ way. Einstein’s gravity coupled to (quantum) matter fields (i.e. ă Tµν ą is
coupled to gravity, too) produce HD terms when calculating the semi-classical limit.
I want to prove that L = f(R) is conformally equivalent to Einstein-Hilbert plus a scalar
field - which we can use as inflaton field. Whereas until now, the scalar field was as-
sumed to just exist in a potential with the right properties it is of major importance
to derive a possible origin for this field. The equations are used in later treatments as
well.

S =
1

16πG

ż

d4x
?
´gf(R) (3.22)

Its variation gives

Bf

BR
Rµν ´

1
2
gµνf+∇i∇i

Bf

BR
gµν ´∇µ∇ν

Bf

BR
= 0 (3.23)

Precisely,

δS =

ż

d4x(δ(
?
´g)f(R) +

?
´gδ(f(R))) (3.24)

where the variation of the metric part is derived with the help of Tr lnM = ln detM
with M = gµν, giving δ

?
´g = ´1

2

?
´ggµνδg

µν. The variation of the curvature
function is given by

δf(R) =
Bf

BR
δR =

Bf

BR
δRµνg

µν +
Bf

BR
Rµνδg

µν (3.25)

The variation of the Rµν is derived with the help of the Palatini equation ∇αδΓαµν ´
∇νδΓαµα where I can shift the metric inside the variation assuming the metricity condi-
tion. Using symmetry arguments and substituting δΓσµν the variation can be rewritten
(from now on Bf

BR
= f 1):

δS =
1

16πG

ż

d4x
?
´g

(
(f 1Rµν ´

1
2
fgµν)δg

µν
´

1
2
f 1∇σ(∇σ(δgµν))gµν ´∇µ(δgµσ)

)
(3.26)

In order to get the variation with respect to the metric I integrate the second part
twice and assume the usual boundary conditions (for a precise treatment one should
evaluate the boundary terms). The first part is the known Einstein-Hilbert variation
for f(R) = R.

δS

δgµν
= f 1Rµν ´

1
2
fgµν ´∇µ∇νf 1 +∇µ∇µf 1gµν (3.27)

giving 3.25 for the matter-free case. However, I would like to find the corresponding
potential when the RHS is given by

´
1

4πG
?
´g

δSM

δgµν
=
Tµν

8πG
(3.28)
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Conformal equivalence will give the result

ĝµν = h(R)gµν (3.29)

which should produce Einstein’s equations under conformal transformation:

R̂µν ´
1
2
gµνR̂ =

1
8πG

T̂µν (3.30)

eliminating the undesired part above. The energy tensor is dependent on the scalar
field and will give the potential I am looking for.
The approach is similar to Whitt’s [88]who investigates the Lagrangian of R´2Λ+αR2

and the conformal factor of ĝµν = (1+2φα)gµν. I am using his result (rewritten) on
the conformal transformation on the Ricci tensor without a priori knowing the form
of h. From now on ∇α =;α

Rµν Ñ
Rµν

h
´
gµαh

α
;ν

h2
+

3gµαh;νh
;α

2h3
´
gµνh;αβhg

;αβ

2h2
(3.31)

This gives a transformation for the scalar

RÑ
R

h
´

3h;αβ

h2
+

3h;αh;βg
αβ

2h3
(3.32)

Now I substitute this into the transformed Einstein equation 3.30 with the energy
tensor dependent on the scalar field.

Rµν ´
1
2
gµνR+

3
2h2

(
gµαh

;αhν ´
gµνh;αhβg

αβ

2

)
´

1
h

(
gµαh

;α
µ +

1
2
gµνh;αβg

αβ

+
3
2
h;αβg

αβ
)
= 8πG

(
gµαφ

;αφ;ν ´
1
2
gµνφ;αφ;βg

αβ + hVgµν

)
(3.33)

Inspection gives φ =
b

1
16πG

ş h;

h
=

b

1
16πG lnh to make it similar to the desired

Einstein equations by eliminating the kinetic terms.

Rµν ´
1
2
gµνR+

1
h

(
gµνhαβg

αβ
´ gµαh

;α
ν

)
= ...

If the function h is now taken to be h = Bf
BR

the solution is straight-forward. Substi-
tuting this back gives a general formula for the potential:

V(φ) =
1

16πG
f´ f 1R

f 12
(3.34)

The curvature scalar R can be substituted by a function dependent on φ when the
formula for h is substituted into the formula for φ above and then rearranged to give
R = g(φ). This might not always be possible. We also see that we have just introduced
a new degree of freedom (dof)!
Back to Starobinsky’s Lagrangian 3.20. Here,

h = 1´
R

3m2
φ =

c

3
16πG

ln
(

1´
R

3m2

)
(3.35)
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Solving for φ this gives the potential we are looking for:

V =
1

16πG
R2

6m2

(
1´

R

3m2

)2

=
3m2

32πG

(
1´ e´

?
16πG

3 φ
)2

(3.36)

As the figure shows, this is a desired SR potential 3.6. SR is possible from large φ
values with a flat plateau. When the field has rolled down to the minimum it starts
oscillating and reheating takes place 3.4.1. Note that the field’s potential value is de-
sirably small. The amplitude is V0 = 3m2

32πG „ 0.03 ¨m2m2
p „ 10´7m4

p.
Its perturbations will be analysed in the section on cosmological perturbations along

Figure 3.6: Starobinsky potential. The potential has a minimum at 0(V 2(0) ą 0), saturates
as φ Ñ ∞ at V0 = 3m2

32πG and diverges for φ Ñ ´∞.The RHS is dominated by the R2

behaviour, the LHS the usual Einstein-Hilbert term. ’Semiclassical analysis of the tensor power
spectrum in the Starobinsky inflationary model’, 2020.

with a prediction of the scalar field’s mass.
As mentioned, Whitt treated a similar approach in which he showed [88] that L =
R ´ 2Λ + αR2 is equivalent to Einstein gravity with a massive scalar field. He then
applied his result to black holes which have no hair for the Λ = 0 case.11

In the appendix there is a table with different inflation models 7.3.1, their potential
and expansion factor and some further investigations. The number of inflation mod-
els increased in the past four decades and also goes beyond simple SR: models with

11He calculated the eom, took the trace and found that the conformal transformation, ĝµν = (1 +
2αφ)gµν and identified φ = R. As long as the cosmological constant is non-negative DEC is satisfied
and the field is non-tachyonic withm = 1?

6α
. He further investigates he effect of R2 on FRW cosmology

indicated by the eom and the substitution of SR approximation

6α(1 + 2αφ)�φ´ 12α2φµφ
µ = φ´ 4Λ (3.37)

6α(1 + 2αφ)(´φ̈´ 3Hφ̇) + 12α2φ̇2 = φ´ 4Λ (3.38)

If φ is large it decreases like 1
24Hα giving a Hubble parameter of H2 = 1

24α and flat curvature. Hence,
it is suitable for Planck era inflation.
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multiple fields and beyond ’potential’-driven models such as k-inflation (’kinetically’
driven) and many more which we won’t discuss here.

3.4 How to End Inflation

It is not known when inflation exactly starts or ends. It is assumed that it starts 10´36s
and lasts until 10´35s to 10´32s. This is obviously a huge difference when we recall that
the universe expanded exponentially. The size of the universe at the end of inflation is
many orders above the size a Planck time less. Even if its initial size is lp „ 10´33cm,
it would be now 101012

cm (again dependent on the model), more commonly given is
an observable size of 1028cm 7.7.5.
Inflation was constructed to solve the aforementioned problems. They control the end
of how the state of inflation should be. This depends on the kind of inflation model
used. I showed that about 60 e-folds are needed.

Figure 3.7: Eternal chaotic universe:
quantum fluctuations are superim-
posed on the classical motion, here
for V = 1

2m
2φ2. For values greater

than the Planck density quantum fluc-
tuations dominate that we cannot de-
scribe without a theory of quantum
gravity. Below quantum fluctuations
of the scalar field may dominate and
lead to eternal inflation. For val-
ues below 1?

m
the classical behaviour

dominates and the field rolls down
the potential (SR). It tehn starts oscil-
lating around the minimum - reheat-
ing the universe. Inflationary Cos-
mology, Linde.

Using particle physics, independent from the
models described, the universe was driven by an
unknown form of matter. In the old inflation in-
flation ends with the tunneling to the true vac-
uum, in the new inflation when the rolling is in
the same state so when the symmetry breaking/
phase transition is finished. Similarly, chaotic in-
flation ends when the field is in the minimum
of the potential. The expanding universe cools
down to the reheating temperature which should
make the standard Big Bang scenario 7.1 possible,
but shouldn’t be too high (Planck scale) that the
’undesired’ relics like magnetic monopoles cannot
form again. During new and chaotic inflation the
field can transfer by slowly rolling its potential en-
ergy to kinetic energy. When it begins to oscillate
about the true minimum of the potential, i.e. its
state decays, particles are produced as the field is
coupled to not only itself but also other fields. Ba-
sically, the inflaton decays into the quanta of all
known elementary particles of today. The electro-
magnetic radiation produced dominates the era
after.

3.4.1 Reheating

Inflation is a phase of supercooling. Dependent
on the model, the temperature decreases about
five orders of magnitude (1027K to 1022K). The
volume of the universes increases by about e360

„ 1.1578 such that the density of any
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other matter should decrease to almost 0. After the end of inflation reheating takes
place, leading to particle production. It is important to determine the temperature
at the end of inflation/the reheating phase to understand mechanism behind and the
universe’s evolution. How can one calculate the temperature at the end of a model
dependent inflation where we don’t know when it started, at what temperature it
exactly started and what kind of matter it powers?
To get an estimation I choose chaotic inflation with a potential of V = 1

2m
2φ2 as here

the reheating process fits the usual explanations. I assume that the scalar particles
oscillate at the same frequency and the energy transfer from them onto the other
fields is the decay process and is followed by reheating. As SR ends with the end of
inflation the equations are given by the Klein-Gordon equation

φ̈+ 3Hφ̇+m2φ = 0 (3.39)

and the Friedmann equation

H2 =
4π

3m2
p

(
φ̇2 +mφ2

)
= α

(
φ̇2 +mφ2

)
, α =

4π
3m2

p

(3.40)

I would like to solve those equations with H(t) and φ(t). As the coupled equations
without explicit dependence on time aren’t easy to solve, I make an intuitive ansatz
that I would like to have oscillations with a frequency proportional to the mass of
the scalar field as well as a Hubble parameter behaving like 2

3t for late times since
reheating is followed by the radiation era. The second equation is solved by12

φ =
H

m
?
α

cos θ

φ̇ =
H

?
α sin θ

(3.41)

Substituting this back into the first equation and using Ḣ
H

= sinθ(1+θ̇
cosθ ) and θ̈ = Ḣ sinθ?

α
+

H cosαθ̇?
α

gives

Ḣ

3H2
= ´ sin θ2

´φ̇ = m+
3
4
H sin θ cos θ

(3.42)

confirming for
∣∣θ̇∣∣ = m. The first equation then gives

H =
2
3t

(
1´

sin 2mt
2mt

)´1

(3.43)

a „ e
ş

( 2
3t+

1
3t2m

sin 2mt)dt „ t
2
3

(
1´

1
24m2t2

+
cos 2mt
6m2t2

)
(3.44)

12In another coupled equation system this trick was used in the cosmology course at UCL.
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For late times this behaves like a radiation dominated Hubble parameter. Going back
to the oscillation ansatz, 13

φ(t) =
2

3
?
α

cosmt
mt

(
1´

sin 2mt
2mt

)´1

„
mp
?

3π

cosmt
mt

(
1 +

sin 2mt
2mt

)
(3.48)

Now following [8] for example the friction term gets placed for 3Hφ̇ Ñ 3Hφ̇ + Γφ̇,
including the decay rate of the scalar inflaton field.
At the end of inflation the field oscillates around the minimum of the potential

ρ̇+ 3Hρ = 0 (3.49)

The energy of the inflaton field decays 3Hρ Ñ 3H + Γ where Γ is the coupling
parameter. The derivation can be found in [8].
The scalar particles all oscillate at the same frequency and transfer energy to the other
fields. This decay process is the reheating era. The Klein-Gordon equation is changed
to

φ̈+ 3Hφ̇+ Γφ̇+ V 1 = 0 (3.50)

Using standard up to quadratic Lagrangian with the scalar (inflaton) field being cou-
pled to itself and say another scalar and a fermionic field

L =
1
2
BµφB

µφ´
1
2
m2
φφ

2 +
1
2
BµχB

µχ´
1
2
m2
χχ

2 + g2
1φχ

2

+Ψ(iγµBµ ´mΨ)Ψ´ g2ΨΨφ

(3.51)

Following symmetry breaking we would need to shift the potential to 1
2m

2
φφ

2 Ñ
1
2m

2
φ(φ´ a)

2. The part I am interested in is the interaction Lagrangian.

Lint = ´g1φχ
2
´ g2ΨΨφ (3.52)

with no tachyons, |g1φ| ă m
2
χ. In order for quantum effects to be vanishing small, I

13Algebraic steps are left out. A general treatment of φ̈+ 3Hφ̇ = ´V 1 along with H2 = 8πG
3 ( 1

2 φ̇
2 +

V), Ḣ = ´4πGφ̇2 gives under substitutions lna = y,u = dφ
dy

,

du

dφ
= ´

(
1´

4πGu2

3

)(
3 +

V 1

8πG
3 Vu

)
(3.45)

Then proceed by u =
b

3
4πG sin θ, θ = r cos θ, substitute V, t 1 = mt,

sin 2θ
d2θ

dt 12
´ 2

(
dθ

dt 1
+ 1
)(

cos2 θ
dθ

dt 1
+ sin2 θ

)
= 0 (3.46)

and check stability of θ = ´mt, dθ
dt1

= x gives x 1 = ´1 + γ,γ ăă 1

´1 + γ

γ
dγ = (γ cot θ+ tan θ´ cot θ)dθ (3.47)

will be driven to 1.
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χ χ

φ

Ψ Ψ

φ

assume mχ,mΨ ăă m. Reheating should end when H ă Γ , so after about t „ 2
3Γ

The temperature can be calculated via[8]

Treh =

(
90

8π3g˚G

) 1
4

„ 0.2
(

100
g˚

) 1
4
a

Γmp (3.53)

where the total decay rate is the sum of the decay rates to scalar particles and fermions
and g˚ the total number of degrees of freedom, expected to be between 100 and 1000.
In the literature this is found to be[8]

Γ = ΓφÑχχ + ΓφÑΨΨ =
g2

1

8πm
+
g2

2m

8π
(3.54)

Again, the couplings are assumed to be small, giving upper bounds14 of g1 ď 5m
and g2

2 ď
8πm
mp

. If the scalar field is of mass 1016mp this gives an upper bound of

Γ „ 1016mp (decay only to light scalar particles) and a lower bound of Γ „ 10´12mp
(decay only to fermions). A short check on dimensional analysis gives the right dimen-
sion of mass [Γ ] = T´1 = M. We can disregard the decay to itself „ m3

m2
p
„ 10´18mp,

but should actually evaluate the probability that the decayed particles can recombine
as long as the temperature is still high enough. This is beyond the scope of this work
and we work with a supercooling phase anyway.
We can now substitute this back into equation 3.53 to get an estimation for the tem-
perature. For the upper bound we find a temperature of Treh „ 2 ¨1015GeV and a lower
bound of Treh „ 2 ¨ 1012GeV. With three orders of magnitude this is quite a difference.
Hence, in my opinion,the reheating process should be investigated more thoroughly.
The upper limit should also coincide with the Hubble parameter at that time. Hence,
giving the density at the time of reheating. The derivation of 3.53 by [66] is based
on the assumption that the width of the decay rate is equal to the Hubble parameter
(giving an instantaneous conversion of the energy of the inflaton field into radiation)
and the fact that the potential energy is much smaller than the kinetic one. The author
uses a similar oscillation approach as above, giving a formula of

φ0 = φi

(ai
a

) 3
2

cosm(t´ ti) (3.55)

where i is at the beginning of the oscillations and 0 the oscillating part around a
minimum at a. He then sets the energy density stored in the potential energy of the
inflaton and the kinetic energy it gains by having rolled down and now oscillating
equal where he also averages over many oscillations.

ă φ̇2
0 ą=ă V(φ0) ą=

1
2
ă ρφ ą (3.56)

14To get a rough estimate I used the upper bounds given in ’The Leptonic Higgs Portal’, 2016.
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To find a formula for the density he rewrites the density’s evolution with 3.56 and the
KGE without oscillation:

ă ρ̇φ ą=

〈
d

dt

(
1
2
φ̇2

0 + V

)〉
=
〈
φ̇0φ̈+ V 1φ̇

〉
=ă ´3Hφ̇2

0 ą= ´3H ă ρφ ą

(3.57)
This gives indeed a formula for the density which can then be substituted into the SR
condition of the Hubble parameter and equated to the decay rate of the inflaton.

H2 =
8πρφi
3m2

p

(ai
a

)3
= Γ 2 (3.58)

The next step is disputable as he equates the energy density of the inflaton field with
the radiation energy density which can be given in a form proportional to ρr „ T 4

reh
and depending on the effective number of dof15. Solving for the temperature gives
the formula 3.53. It is rather nonphysical that the energy transfer is given in an in-
stantaneous form, same for the density transform from matter-like to radiation.
It is not known how the reheating mechanism takes place in detail as well as it is
dependent on the model chosen. There is also no systematic analysis of the process
(sometimes adding four point interaction terms that seem to dominate, sometimes
leaving them out etc.). The reheating temperature should be used as an effective pa-
rameter to estimate when and what energy the radiation era started. However, in
most derivations it is the other way around.

3.5 Observations

3.5.1 Cosmological Perturbations

The only accelerator so far that gets ’near’ the GUT or Planck scales is the observation
of the early universe via the LSS and CMB. The idea behind cosmological perturbations
is that in the beginning the field and metric fluctuates and produce small irregularities.
As we have seen previously, for former inflation would then end at slightly different
times i.e different temperatures. Those initial quantum fluctuations were the seeds
for the observed LSS such as galaxies today.
How are quantum and density fluctuations related? During inflation wavelengths of
vacuum fluctuations of φ grow exponentially, if they become greater than H´1 the
fluctuations stop and the amplitude freezes (Ø large friction). One can show that the
scalar field perturbation (a more detailed approach can be found below) is of order

|δφ(x)| „
H

2π
=

c

2GV
3π

(3.59)

15It is summed over all species using Fermi-Dirac and Einstein-Bose statistics giving ρr = π2

30g˚T
4
reh

where g is the effective number of dof. Today’s SM gives a total number of dof of 118 (6 ¨ 2 ¨ 3 ¨
2 + 3 ¨ 2 ¨ 1 ¨ 2 + 3 ¨ 2 ¨ 1 ¨ 1 + 1 ¨ 1 ¨ 8 ¨ 2 + 1 ¨ 1 ¨ 1 ¨ 2 + 2 ¨ 2 ¨ 1 ¨ 2 + 1 ¨ 1 ¨ 1 ¨ 1 + 1 ¨ 1 ¨ 1 ¨ 1
where each elementary particle quarks, charged leptons, neutrinos, gluons, photons, W˘,Z0, Higgs
boson, respectively, is given by flavour¨particle/antiparticle¨colour¨spin). At high energies (as in the
early universe) the dof of fermions contribute less 7

8 than the ones of bosons, giving a smaller effective
number of dof. We don’t know the effective number of dofs at the time of reheating.
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in a time interval of H´1 and assuming SR. Assuming adiabatic density perturbation
(=fluctuation in energy density) δρ „ δφV 1(φ) this can be substituted into the density
perturbations which we know are of order δρ

ρ
„ 5 ¨ 10´5. For certain potentials one

can then calculate the ranges of parameters they can take in order to fit observations.

LSS

The large scale structure is the structure of the macroscopic universe, the pattern of
galaxies and their even larger scales of clusters and clusters of clusters. As our solar
system has irregularities in form of planets, galaxies tend to group in clusters and in be-
tween those there are vast voids. Measurements of the density parameter have proven
that the universe is nearly spatially flat, the WMAP satellite, for example, measured a
density parameter Ω to almost unity. To measure the flatness both observations are
necessary, LSS quantities such as galaxy clustering, velocity measurements and gravi-
tational lensing studies and the CMB 3.5.1 (WMAP, Komatsu et al., 2008).
More about the Big Bang theory and its observational evidence can be found in the
appendix 7.1.

CMB

The cosmic microwave background was first observed in 1965 by Penzias and R. Wil-
son at Bell Labs (first measurements suggested a tempertaure of 3.5K) and predicted
by Dicke, Peebles and Wilkinson at nearby Princeton. The steady-state theory in which
the universe satisfies the cosmological principle but has and will be expanding in a way
that the average density stays the same had to make space for the Big Bang theory. It is
the radiation emitted by the last scattering surface 7.1, hence, the oldest electromag-
netic radiation that we can use today to probe early cosmology. The Sachs-Wolf effect16

postulates that the density perturbations induce CMB anisotropies with a correspond-
ing spectrum - as we will see, scale invariant on large angular scales. Photons of the
CMB are redshifted when they move up the gravitational potential and blueshifted
when they move down. The first measurements showed an almost perfect black body
at a temperature of T „ 2.7K, almost uniform in all directions 3.8. As the radiation is
basically the redshifted picture of the universe at recombination the standard Big Bang
assumption was proven. The initial state of the universe must have been isotropic and
homogeneous. COBE (Cosmic Background Explorer, 1989 to 1993) was the first satel-
lite that probed the CMB on homogeneity and isotropy as well as small anisotropies.
It was followed by WMAP (Wilkinson Microwave Anisotropy Probe, 2001 to 2010)
and the Planck spacecrafts (2009-2013) that improved the results further. Further,
primordial irregularities resulting in anisotropies, were detected in δT

T
„ 10´5, actu-

ally
〈(
δT
T

)2
〉 1

2
„ 10´5. This is the value after subtracting the dipole caused by the

motion of the satellite (e.g. COBE) as radiation is blueshifted at high temperatures in
one direction and redshifted in the other. The peaks after the plateau (Sachs-Wolf) in

16They proved how photons in the CMB are gravitationally redshifted and produce the fluctuations
measured (on large scales) [91]. How are we able to observe the fluctuations in brightness differences?
The (inflationary) expansion stretches the wavelength emitted at the time of recombination and hence
lowers the photon density causing a decrease in intensity.
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Figure 3.8: FIRAS measurement of the CMB, intensity vs frequency, consistent with a
blackbody at 2.7K diagram. (aether.lbl.gov/www/projects/cobe)

the plot of the temperature fluctuations of the power spectrum that will be described
later are due to acoustic oscillations in the photon-baryon mixture fluid. The pressure
of the photons works against the gravitational compression in the well. The higher
the peak (= temperature fluctuations) the more baryons are produced. It follows the
dissipation, the tail of the spectrum proceeded by matter-domination. The form of the
power spectrum would be shifted if the universe was spherical or hyperbolic to the
left or right, respectively, proving a flat universe.
The main features of the power spectrum are encoded in the spectral index ns and
tensor-to-scalar ratio r which will be discussed in detail later. The power spectrum of
scalar and tensor perturbations is one of the most analysed in inflationary cosmology
(for the derivations see 3.5.1).
The simplest models predict an adiabatic, Gaussian and nearly scale-invariant power
spectrum 17, meaning

• equal fluctuations in all forms of energy producing perturbations in spacetime
curvature. It predicts 100% adiabatic and 0% isocurvature, where latter are
the only other possible perturbations via entropy. It means that the ’amount’
of perturbations is evenly distributed (baryonic matter, radiation, dark matter).
The expansion is physically reversible as the entropy stays constant.

• its statistical distribution is a bell-curve Gaussian and any joint distribution of
density contrasts at different points is a again multivariate normal.

• a nearly scale-invariant statistical measurement of the curve, an almost straight
line (ns „ 1, but not exactly unity). It also means that the measurements
not dependent on the size of the area, in all scales it should measure the same
strength. They are expected to have slightly larger magnitudes on large scales.

17A. Albrecht and P. Steinhardt, ’Cosmology for Grand Unified Theories with Radiatively Induced
Symmetry Breaking’ (1982)
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respectively. In addition to that, it should have

• an upper limit for the maximum temperature after inflation of definitely T ă
1019GeV

• superhorizon fluctuations i.e. fluctuations on scales larger than light could have
travelled since the Big Bang (inflation stretches quantum fluctuations and they
should be observed on scales larger than the cosmic horizon).

• almost perfect flatness

• primordial gravitational waves (in form of B-modes)

Figure 3.9: WMAP 5-year data along with other measurements give the temperature power
spectrum with my comments showing clearly the expected oscillations with the properties I
describe. It is given in multipole moments (many single maps) vs anisotropy power. It shows
that the temperature measured at different angular scales (R 90˝, spike at 1˝ - about multipole
360˝/l ). The observed data fit very well with the theoretical predictions (red line). (’Five-Year
Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation’,
2008)

Primordial Gravitational Waves

The last point hasn’t been measured until now. Today major efforts are taken to find
imprints of tensor modes in the polarisation of the CMB. Those should have been gen-
erated through the scattering of the anisotropic radiation at the free electrons right
before recombination since gravitational waves deformed spacetime. A special po-
larisation pattern is produced, so-called B-modes. This should be measurable in the
amplitude of the CMB, deformed in one direction (also called curled pattern). It can-
not be created by scalar fluctuations, so it can only be due to tensor perturbations
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- gravitational waves18. Satellites like Planck, but also balloon and experiments on
Earth like BICEP (Background Imaging of Cosmic Extragalactic Polarization, 2002 un-
til now) look for those B-modes.19. Their formation from the metric perturbation can
be found below and for a specific treatment of the Starobinsky model see 7.7.8.

Mathematical Derivation Cosmological Perturbations

The idea of cosmological perturbations goes probably back to Zeldovich’s and Sakharov’s
work, but is tackled with another approach today. Latter assumed that the effective
theory of the gravitational field is quantum, it should be possible to derive its form
from the quantum effect of matter fields.20 An explicit derivation of cosmological per-
turbations is beyond this work. I will give a short derivation to show its origin and its
result in the power spectrum [8][82][9].
Initially, densities are produced due to quantum/vacuum fluctuations possible via
Heisenberg’s uncertainty relation (spontaneously created particle-antiparticle pairs)
that became separated before they could annihilate. Quantum vacuum is not empty.21.
Particles n and antiparticles n depend on time and their mass, I assume zero curvature
and no cosmological constant in a radiation dominated era. Without any interactions
the evolution in comoving coordinates is be described by

d

dt
(na3) =

Bn

Bt
+ 3Hn = 0 (3.60)

Adding interaction the RHS should have a term proportional to their interaction rate
i.e. the number densities of both particles and antiparticles and their mean product of
cross sectionσ and velocity v (basically think of a tube) and a temporal term depending
on the universe’s expansion and interaction P(t),

Bn

Bt
+ 3Hn = ´nn ă σv ą +P(t) (3.61)

The evolution of the antiparticles simply substitutes the LHS with n (RHS is the same
due to symmetry) and we also know that d

dt
(na3) = d

dt
(na3) Ø (n ´ n)a3 = const.

If we then assume particle anti-particle symmetry, const= 0 and P(t)9 ´ neqneq, we
find

d(na3)

dt
=ă σv ą (n2

eq ´ n
2)a3 (3.62)

Now I proceed with the change of variables, Y9 n
T 3 and X9m

T
. Along with t9a29T´2

and T = m 3.62 can be rewritten in terms of Y = Y0na
3

dY

dt
=ă σv ą (T)(n2

eq´n
2)Y0a

3 =ă σv ą (T)(Y2
eq´Y

2)g(T), g(T) =
1
Y0a3

(3.63)

18Recall that massless vector fields are conformally invariant. If we introduced mass perturbations
would be largely suppressed or we would need to break invariance by a further coupling.

19The properties of the predicted B-modes can also be produced in other cosmic events. Cosmic dust
produced artefacts such that primordial gravitational waves were falsley reported by Bicep2 (Ade et al,
’Detection of B mode polarisation’)

20’Gravitational instability: An approximate theory for large density perturbations’ (1969) and ’Vac-
uum quantum fluctuations in curved space and the theory of gravitation’ (1968), respectively.

21The following calculation follows the problem asked on relic baryon density, Cambridge University,
PS 4 on conditions of inflation.

42



Also, for t = tmX2 with t = tm for m = 1 gives

dY

dt
=

dY

2tmdX
=

1
HX

dY

dX
, H = H(T = m) (3.64)

Setting both equal and rearranging gives

dY

dX
= ´

λ

X2
(Y2

´ Y2
eq), λ =

m3 ă σv ą

H
(3.65)

A number density at equilibrium is then9(mT)
3
2e´

m
T i.e particle anti-particle annihila-

tion as expected. Obviously, we live in a universe dominated by matter (or anti-matter
depending on your definition). The energy of the CMB comes in fact from such an an-
nihilation process.
The aforementioned satellites can show the primordial power spectrum in form of
perturbations of the metric and field produced during inflation. The CMB gives scalar
and tensor perturbations - the scalar dependence of the power spectrum of scalar fluc-
tuations is measured with the scalar spectral index ns. The tensor-to-scalar ratio r
measures the suppression of tensor perturbation with respect to scalar perturbations.
Perturbations (the metric gµν, field φ itself, the density ρ, the pressure p etc.) are
represented for any quantity Q(x) = Q(t,~x) in Q(x) = Q(t) + δQ(x) where the first
term on the RHS is the homogeneous background.
The metric perturbations are decomposed into scalar, tensor and vector parts

ds2 = ´(1 + 2A)dt2 + 2a(BiB´ Si)dxidt+ a2((1´ 2Ψ)δij + 2Eδij
+ 2δ(iFj) + hij)dxidxj

(3.66)

where the lapse A (sometimes already set toΦ), the shift B BiB, Ψδij and the shear E
δijE are the scalar, Si and δ(iFj) vector and hij the tensor perturbations, respectively.
The vector parts are both constrained, the tensor perturbations are symmetric and
constrained (hii = Bih

i
j = 0). This gives a total dof of 5 (δφ A,B ,E , Ψ) + (6-2)

(Si, Fi) + (6-4) (hij) = 11. An important remark is to use gauge invariant quantities
(such as φ ´ 1

a
(a(B ´ E 1) 1 for a small transformation xµ Ñ xµ + ζµ) to analyse the

inhomogeneities, for example the (comoving) curvature perturbation Ψ measured in
the spatial curvature :

R =
4
a2
∇2Ψ = Ψ´

H

ρ+ p
δq (3.67)

where q is the 3-momentum, Biδq = T 0
i . Hence, for inflation we arrive at

R = Ψ+
H

φ̇
δφ (3.68)

as Biδq = ´φ̇δφ and ρ + p = φ̇
2
. A common gauge choice is the comoving gauge,

E = δφ = 0 (see also Mukhanov, 7.1.1+, ’Physical Foundations of Cosmology’). Us-
ing the action 7.4 and substituting the metric we will be able to quantise this. The
aim is to get a formula for the power spectrum resulting from the quantum/vacuum
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fluctuations.

S „

ż

d4x

(
φ̇2Ṙ2a3

2H2
´
a(BiR)2

2

)
(3.69)

keeping only terms up to second order [48] with five degrees of freedom. This is then
redefined v = zR with z2 = a2φ̇2

H2 = 2a2ε and using conformal time Bη = Bt
a

gives

S =
1
2

ż

dηd3x

(
(v 1)2

´ (Biv)
2 +

z2v2

z

)
(3.70)

Introducing Fourier modes v(η, x) =
ş

d3k
(2π)3vke

ikx now gives a form of the Mukhanov-
Sasaki (Mukhanov (1988), Sasaki (1984)) equation, a simple harmonic oscillator with
a time dependent frequency
wk = ˘

a

k2 +m2
eff:

v2k +

(
k2
´
z2

z

)
vk = 0 (3.71)

This can be found after variation (assuming proper boundary conditions)´v2+BiBjv+
z2v
z

= 0. Also, vk is a special kind of vacuum called Bunch Davies vacuum found in

the de Sitter case, vk(η) = e´ikη?
2k

(
1´ i

kη

)
. The frequency has an effective mass of

z2

z
„ ´ 2

η2
22. At early times, η Ñ ∞ (subhorizon scale) it behaves oscillatory and

curvature independent, 9 e˘ikη and growing and curvature dependent 1
η

at late times
(superhorizon), kη Ñ 0. When the horizon is crossed a comoving momentum scale
starting at subhorizon can become superhorizon 3.10. Hence, at early times there
is a preferred mode (subhorizon) which provide a time independent vacuum state
(ω2

k = k2 ´ 2
η
Ñ k2), a unique vacuum state „ Minkowski space.

I will quantise this result in order to find the vacuum fluctuations. v̂k = vkâk+v
˚
kâ

:

´k

which as usually gives

x0| v̂kv̂k 1 |0y = (2π)3δ(3)(~k´ ~k 1)|vk|
2 (3.72)

Substituting |vk|
2
= 1

2kη

(
1
k2η2 + 1

)
and back v = aφ̇R

H
and aη = 1

H
gives the curva-

ture perturbation vacuum two-point function:

|x0|RkRk 1 |0y| = (2π)3δ(3)(~k´ ~k 1)
H4

2k3φ2
(1 + k2η2) (3.73)

The superhorizon |kη| Ñ 0 gives a limit of (2π)3δ(3)(~k ´ ~k 1) H4

2k3φ2 at the crossing of
horizon value ηH (it is momentum dependent via H = k

a(ηH
. The power spectrum is

defined by
|x0|RkRk 1 |0y| = (2π)3δ(3)(k´ k 1)P(k)R (3.74)

giving a formula of

P(k)R =
H4

2k3φ̇2

∣∣∣∣
H

(3.75)

22 z2
z

= v2´0.25
η

with v „ 3
2 + 3ε´ η [8].
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Figure 3.10: TASI Lectures on Inflation, D. Baumann, 2012. Temporal evolution of density
fluctuations k´1 and comoving Hubble radius (aH)´1 From left to right. 1. Subhorizon with
0-pt fluctuationsRk 2. inflation starts, superhorizon when crossing the horizon the comoving
Hubble radius decreases and perturbations freeze until they re-enter 3. transition function,
CMB recombination, perturbations are in the anisotropies of the CMB and perturbations in
LSS today Cl.

This proves the scalar perturbations from 0-point fluctuations. Often it is the dimen-

sionless quantity ∆2
s = k3PR

2π2 = H4

(2π)2φ̇2

∣∣∣∣
H

. Similarly, the tensor perturbations (see

Baumann [9]) can be calculated ∆2
t(k) = 16H2

πm2
p

∣∣∣∣
H

. Both are evaluated at the cross-

point.
The last step is to correlate this to the CMB’s observations. The angular power spec-
trum

Cl =
2
π

ż

dkk2PR(k)∆T (k)2 (3.76)

[9] where ∆T is the transfer function which encodes all major effects that lead to
perturbation growth23, ∆x(k)∆Y(k), representing the anisotropies of the CMB.
Further, we should relate those with the known SR parameters

ε =
φ̇2

2H2

η = ´
φ̈

Hφ̇

(3.77)

The above mentioned scalar spectral index is then given by

ns = 1 +
d ln∆2

s

d lnk
= 1 + 2η´ 4ε

∣∣∣∣
H

(3.78)

the corresponding tensor spectral index

nt =
d ln∆2

t

d lnk
= ´2ε

∣∣∣∣
H

(3.79)

23Acoustic oscillations, damping on small scales, radiative drags and the Meszaros effect.
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and the tensor-to-scalar ratio

r = 1 +
∆2
t

∆2
s

= 16ε

∣∣∣∣
H

(3.80)

which have been evaluated with k = dk
d lnk , differentiating wrt N24. Note that the last

two are correlated via ´8nt = r. In most experiments ns and r are measured, latter
being very tiny such that only upper bounds have been given so far. Using ?? ε „ εV
and η „ ηV ´ εV the parameters are easily rewritten

ns = 1´ 6εV + 2ηV

∣∣∣∣
H

nt = ´2ε

∣∣∣∣
H

r = 16εV

∣∣∣∣
H

(3.81)

An example can be found in the appendix and I will use the equations in the asymptotic
safety section. Lyth (1996) calculated a lower bound for the variation of the inflaton
during inflation depending on r. Primordial gravitation waves are here strongly sup-
pressed. As it was shown r can be written in terms of the expressions of tensor to
curvature power amplitude.

r =
Pt

PR
=

16H2

m2
pπ

H2

m2
pπε

= 16ε (3.82)

with ε =
m2
p

4π

(
H 1

H

)2
. We also know

dφ

dN
=

mp

2
?
π
?
ε

(3.83)

Substituting 3.82 into this equation leads to

∆φ =
mp

8
?
π
?
r|∆N|

ě mp
r

4π
(3.84)

during inflation. Linde criticised that the density can be sub-Planckian, but φ values
can/must be higher. The formula is also only valid for single fields.
A solution to 3.78 and 3.79 is a simple power law form

Ps = ∆2
s(k) = As(k0)

(
k

k0

)ns(k0)´1

Pt = ∆2
t(k) = At(k0)

(
k

k0

)nt(k0)
(3.85)

24For example, with dN
d lnk = 1 + d lnH

N
and d ln∆2

s

dN
= 2d lnH

dN
´ d lnε

dN
as ε = ´d lnH

dN
gives „ (´2ε ´

2(ε´ η))(1 + ε) „ ´4ε+ 2η.
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where A are the scalar and tensor power spectrum amplitudes and k0 is a reference
scale. A general formula for f(R) can be found in 7.7.8.
Note that one could have also related the field perturbation and curvature perturbation
in the beginning of the derivation via the expansion of the scalar field perturbation
into comoving wavenumbers and then quantising the linearised classical equation.
The boundary condition is sufficient flatness for k ąą aH and the asymptotic value
for k ăă aH can then be calculated [19].

R =
Hδφ

φ̇

ă |δφk|
2
ą =

H2

2k3

(3.86)

Worth mentioning is the running of the spectral index

αs =
dns

d lnk
(3.87)

and also the running of its running. Similar models can be compared by different
runnings of the scalar spectrum. Recent Planck measurements suggest no scale de-
pendence of the running with a vanishing running and zero running of the running.
For SR and ε „ 1

N
25 the running should be of order „ ´dns

dN
„ 1
N2 .

Finally, one might also derive an estimation for the matter perturbations (different
than the metric perturbations derived above) from classical (cosmological) fluid dy-
namics, with the density ρ, pressure p, local fluid velocity ~u and entropy density s.
Energy, momentum and entropy conservation in order:

Bρ

Bt
+∇(p~u) = 0 (3.88)

ρ

(
B~u

Bt
+ (~u.∇)~u

)
+∇p+ ρ∇φ = 0 (3.89)

Bs

Bt
+ (∇s)~u+ s∇~u = 0 (3.90)

To match it with the gravitational field we add ∇2φ = 4πGρ. Now let us perturb
around the background as we did with Q earlier for ~u, ρ,p, s,φ with background
values Q0 and assume homogeneity and isotropy ~u0 = H(t)~r. Substituting into the
conservation equations gives (checked with Brandenberger)

Dtδρ+ 3Hδρ+ ρ0∇δ~u = 0 (3.91)

ρ0(Dtδ~u+Hδ~u) +∇δp+ ρ0∇δφ = 0 (3.92)

Dts = 0 (3.93)

∇2δφ = 4πGδρ (3.94)

with Dt = B

Bt
+ ~u0∇. The equations aren’t independent as Dt (1)+∇ (2) implies

(3). The equation of state, p = p(s, ρ), gives the speed of sound, c2
s =

Bp
Bρ
|s. Similarly,

25N = Hδt,
∣∣Ḣ∣∣δt „ HÑ N „ H2

|H|
Ñ ε „ 1

N
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ζ = Bp
Bs
|ρ. I introduce comoving coordinates to simulate the expansion of the universe,

~r = a(t)~r 1 and Fourier transform, δρ
ρ0

= δk(t)e
i~k.~r 1 . This gives the so-called Master

equation26

δ̈k + 2Hδ̇k +
(
c2
sk

2

a2
´ 4πGρ0

)
δk =

ζ

ρ0
δs (3.95)

We have adiabatic perturbations if δsk vanishes. For k2 = k2
˚ =

4πGρ0a
2

c2
s

the last term
of the LHS vanishes, for k ąą k˚a, δk is of the form

δk „
1
?
a
e
ikcs

ş

dt 1

a(t 1) +
1
?
a
e
´ikcs

ş

dt 1

a(t 1) (3.96)

For large k we observe damped oscillations with frequency„ csk. For kmuch smaller
we have exponential growth. Indeed for small k we have δk „ tp,p = 2

3 ,´1. For the
former the perturbation is then proportional to the scale factor, for the latter decreas-
ing in „ a´

3
2 . With this result we could, for example, compare how different matter

types produce perturbations i.e. measure the perturbations and then conclude which
matter is the dominating form.

Starobinsky Perturbations

In 1982, during the Nuffield Symposium similar conclusion with respect to the new
inflationary universe scenario were drawn. Finally, Mukhanov developed the general
theory of inflationary perturbations of the metric, which is valid for a wide class of
models including chaotic inflation. In the following I will present the perturbations
in the aforementioned R2 inflation. My aim is to get an estimation for the mass of
the scalar field that is introduced since the coefficient in front of the R2 term will play
another role in the AS section.
In fact, Starobinsky gave the first model of primordial perturbations of inflation driven
by curvature R2 (i.e. by a modification of Einstein gravity) in 1980. f(R) theories have
attracted much research in the past years (probably because of their simplicity and the
lack of ’bad’ ghosts).
For general f(R) theory it was derived (Mukhanov, Feldman, Brandenberger (1992))
for ε = ´ Ḣ

H2 , 1 = d
dR

f 1

H2
(1´ ε) + 6f2(4ε+

ε̇

H
´ 2ε2) =

f

6H4
(3.97)

If I substitute f(R) =
m2
p

16π + R2

b0
(for future reference I use this parameter, we will see

later that b is running) into the equation and use N „ 1
2ε

27 the Hubble parameter is
given by

H „ H0 ´
b0

576π
m2
p(t´ t0) (3.98)

263H = ∇~u0,H0 =
b

8πG
3 ρ0φ0 = 2ρ0

3 ~r2,∇(~r)Ñ ∇
a
(~r 1),Dt(~r)Ñ B

B r1
.

27under SR approximation ε ăă 1 during inflation, ε = ´ Ḣ
H2 „

m2
pb

36¨16πH2 ,N „ 288π
m2
pb
H2 „ 1

2N .
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The scalar power spectrum has the general form of

Ps =
1

48π2

H2

ε2f 1
(3.99)

which I calculated in the appendix, I derived a more accurate form where I also differ
between Jordan and Einstein frame (which agree in the result, but not in the form)
7.7.8. Using those results with N „ 1

2ε and f 1 „ 24H2

b0
we have

Ps „
N2b0

288π2
(3.100)

Pt „
b0

24π2
(3.101)

which gives a value of b0 „ 1.737 ¨ 10´9 for 60 e-folds according to WMAP data
(As „ 2.2 ¨ 10´9,ns „ 0.965 rendering k 1 = k

k0
„ 1, checked with Planck data

1010Ps = e3.089 at k0 = 0.002Mpc´1 gives a scalar power spectrum of Ps „ 10´9).
Indeed r is given by r „ 48ε2 „ 12

N2 . Pt hasn’t been observed so far and should be for
this calculated b0 of range 7.33 ¨ 10´12. WMAP data (Komatsu et al., 2011) predicts a
spectrum bounded by Pt ď 0.2Ps which agrees with this result.
Combining both treatments the fluctuations are commonly given in the form (Mukhanov
and others)

δφ̈+ 3Hδφ̇+
c2
sk

2

a2
δφ = 0 (3.102)

ḧij + 3Hḣij +
c2
tk

2

a2
hij = 0 (3.103)

for the scalar and tensor modes (under TT gauge), respectively. For an example, see
7.7.8.

Latest Data

The latest published and reviewed data [20] set constraints on inflation models. Firstly,
it is again a very good match to the standard model of cosmology, the ΛCDM model.
The 2018 Planck CMB anisotropy measurements have further improved the uncertain-
ties. The scalar spectral index is given at ns = 0.9649 ˘ 0.0042 at 68%CL i.e. with
less than 1% uncertainty and there is no evidence for total scale dependence. Near
spatial flatness was measured at 0.4% precision at 95%CL (Planck and BAO data),

Ωk = ´0.011

∣∣∣∣+0.013

´0.012

. Planck gives a tensor-to-scalar ratio rk˚ ă 0.128. In standard

inflation, SR models are favoured with V 2 ă 0. The authors conclude that ’...based on
two different methods for reconstructing the inflaton potential, we find no evidence
for dynamics beyond slow-roll’29. Parameter constraints for different models (includ-
ing R2, power law, natural and hilltop potentials) can be found in there. Starobinsky’s

28k˚ = 0.002Mpc´1 in order to simplify the comparison with previous tensor-mode constraints.
BICEP2 sets a upper bound of rk˚ ă 0.056. Other data is taken at the pivot scale of 0.05MeV´1

29In addition to the usual SR approximation they 1. use a Taylor expansion of the inflaton potential
and 2. a ’free-form reconstruction’ of the potential.
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model fits very well with the data, giving ns ´ 1 „ ´ 2
N

and r „ 12
N2 , 49 ă N ă 59.

Similarly, other potentials not mentioned and beyond this work are good fits. Linde’s
φp, p ą 1 and hybrid potentials are rather disfavoured.
Current fluctuation observations give a maximum of 0.1% corresponding to 1016GeV
i.e. around the expected GUT scale and definitely below Planck scale. Topological
defects indeed haven’t had the possibility to form again. Predicted reheating temper-
atures are consistent with the corresponding models and range between 109GeV and
1013GeV which is a rather large range. Early fluctuations are observed to be at least
at 98.7% adiabatic which can be in agreement with the 100%, but further theoretical
and experimental research is going on whether isocurvature fluctuations are possi-
ble. Planck and WMAP have observed superhorizon fluctuations which can only be
explained by some kind of inflation theory.
Further, constraints on primordial gravitational waves are given. They investigated a
possible running and a running of the running of the spectral index, so a wavelength
dependence, 3.87 where the former is very unlikely and the latter 0. The power spec-
trum of scalar perturbations is modified to include those possible runnings. It was also
looked into whether there is a minority of isocurvature perturbations (so not 100%
adiabatic ones).
In my opinion, it is important to find model-independent constraints as otherwise one
might conclude that in the vast sea of possible inflation models one looks for the data
in the hope that a class or a certain potential fits the data. This was indeed done with
the result that the power spectrum would be given as measured.
Today’s Hubble parameter doesn’t fit the theory. Planck gives a value of 67.27 ˘
0.60km/s/Mpc being in tension with other large scale measurements whereas local
measurements give a value of 73.52˘1.62km/s/Mpc. Until now it is not known what
the cause for the discrepancy is.
The least model-dependent constraints on B-modes are given by Ade et al. (2018)
from the BICEP2 measurements. If we account for some running of the spectral in-
dex, the constraint on r lowers following Planck date. In fact, a negative running
would allow an increase in r as the scalar spectrum would decrease on large scales.
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3.6 Inflation’s Extensions and Possible Alternatives

There ought to be something very special about the boundary conditions
of the universe and what can be more special than that there is no bound-
ary?[...] There should be no boundaries to human endeavor. However
bad life may seem, there is always hope.

(S.W. Hawking)

Before discussing the problems of inflation and how asymptotic safety might be able to
reduce them I would like to mention alternative and ’extension’ solutions to inflation.

3.6.1 Variable Speed of Light

I mention this alternative solution as it is also based on the assumption that funda-
mental constants aren’t constant. In asymptotic safety couplings are set on the run as
we will see.
The varying speed of light (VSL) theory seems to be the most obvious solution to the
horizon problem, but the lack of a consistent mathematical theory and its change of
fundamental physics don’t convince conservative physics. As I will investigate later, in
contrast to inflation, it would be falsifiable by observations in high energy cosmic rays,
the acceleration of the universe and the WMAP data (Magueijo). In [7] Friedmann
equations are solved with varying c and G to get constraints on the running of c in
order to solve the cosmological problems. It is based on the Albrecht-Magueijo model
[47]30 including the assumption that the geometry of the universe is unaffected by
varying c. One cannot just put in Einstein equations, because the conservation equa-
tion would imply G =constant. Scalar-tensor gravity theories of the Jordan-Brans-
Dicke type tackle this question or one would need to allow the energy-momentum
tensor to be not divergence-free anymore, but rather G(x)c(x)´4Tµν should be con-
served (as it is shown in the appendix 7.8 there are terms 9 ċ

c
in the conservation

equation). c(t) is not Lorentz invariant, we have to choose a favoured gauge, the au-
thors choose the cosmological frame. Concerning c only we only arrive at a SR effect
i.e. we are in the local Lorentzian frames.
The authors solve the cosmological problems by constraints on the falling of c as the
universe expands without the need to change the matter content (see 7.8. Here they
modelled the change in c as power law whereas Albrecht and Magueijo propose a sud-
den fall in c (as in a phase transition). Intuitively, the solution for the horizon problem
can then be explained that causal contact is possible if the ratio of the speed of light
in the early universe and today’s value is much bigger than today’s comoving time to
the one at the critical point

cearly

ctoday
ąą

η0

ηx
(3.104)

This corresponds to a comoving radius much less than the one at the critical point,
ctoday(η0´ηx) = r ! rx = cearlyηx. Similarly, the flatness problem can be solved when
calculating α according to 2.3 giving an extra term of 2 ċ

c
α. If ċ

c
ă 0 and

∣∣ ċ
a

∣∣ " ȧ
a

,

30Further investigations on the creation of perturbations and entropy can be found here as well.
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then it can drive α to 0.
They also discuss the question how the cosmological constant arises, how to solve its
problem (3.7) and further questions on perturbations.
Further, Moffat predicts the spectral index ns and tensor fluctuations to ns = 0.96
and nt = ´0.04 (’Variable speed of light cosmology, primordial fluctuations and grav-
itational waves’) which fits the data.
Importantly, actually only constants without dimension should be used, especially con-
cerning possible experiments (variations in dimensional constants can be transformed
away by a suitable choice of coordinate frame). An example for the time-variation of
c could be measured by the fine structure constant [7]. Imagine an atomic clock with
period of T 9  h

E
(Heisenberg’s uncertainty relation with the energy being the Rydberg

energy) and a length proportional to the Bohr radius, l9 a0, the speed of light is given
by

c =

a0
 h
E

α
8πε0 (3.105)

3.6.2 Global Structure

As I have already hinted efforts have also been made into the analysis of the global
structure of the universe(s) and inflation. This raises also the question for a theory of
quantum gravity.

Figure 3.11: Inflation from no boundary.
Imaginary turns into real time. http://www.
ctc.cam.ac.uk/footer/glossary.php

The quantum tunneling from nothing was
proposed by Vilenkin in 1982 and Linde
in 1983. As geometry should be de-
scribed by quantum theory in the early
universe the geometry of space itself can
undergo a quantum transition. Conse-
quently, nothing would turn into some-
thing, a small universe, as an initial state
for inflation. The question of the origin
is self-contradictory. At least, for such a
description we need a theory of quantum
gravity.
Tyron proposed in 1973 that the uni-
verse was created from a single quan-
tum fluctuation. The equality of mat-
ter and antimatter would imply the con-
servation of discrete charges such as the
electric charge. Continuous quantities
such as the energy of all matter (con-
stant, E = mc2) would cancel with
the negative gravitational energy. The
Heisenberg uncertainty principle makes

the spontaneous appearance of vacuum fluctuations possible,

∆E∆t „  h (3.106)
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where the energy can be ’borrowed’ for a very short time. The universe would be
embedded in another space (that he doesn’t define) and concludes ’I offer the modest
proposal that our Universe is simply one of those things which happen from time to
time.’ along with the anthropic principle. The theory lacks of explanation, especially
for the accelerated expansion and the universe’s size today.
The wave function31 of the universe proposed by Hawking and Hartle [26] along with
the no-boundary proposal makes the question for ’what came before’ meaningless ac-
cording to Hawking.
Different from Vilenkin’s idea where spacetime tunnels into place with a wavefunc-
tion of high potential value the universe is in the lowest state, the ground state. The
wave function describes the entire past, present and future at once. Likely states of the
universe should be given by the sum of all possible ways that it might have smoothly
expanded to - similar to the path integral over all possible histories of a quantum sys-
tem, we sum over all possible toy universes (or rather expansion histories of those toy
universes) with euclidean metric and no boundary - except where you evaluate the
wave function.
Possible are all kind of shapes, sizes and all kind of properties. First there is no notion
of time (imaginary), then spacetime becomes Lorentzian when it open up and clas-
sical physics emerges. The theory should explain the state for inflation, but a wave
function’s amplitude increase is needed. It basically selects a universe with rather long
inflation. Important to emphasise is that according to their advocates this eliminates
initial fine-tuning and a notion of probability (as in usual quantum theory) arises, the
conditional probability as we have to take into account that we observe the universe
from here - this is called the Top-Down approach, what we can observe now is used
as late time boundary constraint.

Ψ(hij,φ) =
ż

no boundary
δgµνδφe

´
IE(gµν ,φ)

 h (3.107)

where the integral with the no boundary condition describes the initial condition and
the exponential the dynamics of the theory. hij is the 3-metric on the boundary. The
wavefunction as superposition of quantum states is expected to peak around a class
of oscillatory universes with sufficiently long inflation.
The issue of probability calculation in inflation will be tackled in the next chapter.
Furthermore, global irregularities are due to small different amplitudes in the wave-
function. Their prediction of eternal universes, bouncing or multiverses might be dif-
ferentiated via observations, for example during the bounce the arrow of time would
reverse such that in this model communication to the mirror universe wouldn’t be
possible.
Calculations are done in the so-called ’minisuperspace’ (=here the set of all universes
with a single energy field that makes inflation possible, generally the configuration
space of all universes where we constrain to a certain space of 3-geometries etc.).
We wish to get a high probability for our flat, homogeneous and isotropic universe
with ideally constants as in our universe. The equations are hard to solve, Halliwell

31One might assume as the Schroedinger equation in atomic physics saved the problem of classical
physics that predicts the spiralling of electrons into the nucleus it would solve the singularity problem
on larger scales.
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and Hartle tackled the issue of contour integration (1990). Major efforts have been
invested to find a better way to define the path integral as until now it is only an
approximation. A more detailed calculation and explanation can be found in the ap-
pendix 7.9.

Minus or Plus?

The realisation of the no boundary proposal in the path integral has been a major
challenge. Especially the negative sign in the exponential has caused some debate
(opposite the sign that is predicted by Vilenkin’s tunnelling proposal). There have
been two approaches, the gravitational path integral in the Euclidean and Lorentzian
setting. Former gives after the Wick rotation a well defined integral that can(not)
converge „ e´

SE
 h but loses the notion of causality. On the other hand, latter „ e

iSL
 h

doesn’t give an obvious criterium for convergence. Thus, it is quite interesting to have
a look at recent investigations by Lehners et al. They use the action under the metric
introduced by Halliwell and Louko (1989) ´N

2

q
dt2 + qdΩ2 in form of

S = 2π2
ż

dt

(
´

3q̇2

4N
+ 3N(1´

Λ

3q
)

)
, 3H2 = Λ (3.108)

where N is the lapse function, q is the ’scale factor’2 depending on t (we assume „
FRW) and dΩ is the 3-sphere. This quadratic action should give a viable action.

Figure 3.12: Jσ steepest descent (thimble),
Kσ steepest ascent. We go away from our orig-
inal contour C via those thimbles.

We will apply the following to Einstein
Hilbert (in contrast to 3.107), setting
8πG = 1,

Ψ =

ż

C
δNδqe

iS
 h (3.109)

The idea ([31] and previous works
cited in) is to take the original inte-
grand iS[x(t)]

 h
as a holomorphic function,

x P and look for a integration contour
that converges with the help of Picard-
Lefschetz theory32 (we will do a ’Wick’
rotation of the field rather than the co-
ordinates which in the end is the phys-

ical entity we are interested in). It will help us to get an absolutely convergent
integral from a conditionally convergent integral. Starting point is Ψ =

ş

C δxe
iS
 h

with iS = h + iH,h,HεR, h is the real part of the integrand (the so-called Morse
function). Proceed with the following steps 1. Find the points that are extremal in
h(Ø extremal in the full integrand) 2. from there find the steepest descent of h

32PL theory in maths is a method to analyse topological properties of complex manifolds at the critical
points of some holomorphic function on the manifold. We are allowed to deform the integral contours
because of Cauchy’s Theorem, PL tells us now how exactly to deform it.
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lines (H = const).33 The complexified flow equations (transformed via g(c, c) =
1
2diag(1, 1), c = Re(x) + iIm(x) are given by the usual dc

dσ
= ´ δI

δc
, dc
dσ

= ´ BI
Bc

with I
being the total integrand.34 In Picard-Lefschetz theory we go away from the contour
C by those steepest descent paths, so-called ’thimbles’, C =

ř

nσJσ such that the
integral is now given by

ÿ

σ

nσe
iIm(Iσ]

ż

Jσ
eh (3.110)

Whereas the path integral around C is rather oscillatory we get a more defined one
via Jσ. Applying PL to 3.109 with the boundary conditions at t0 = 0 and tf = 1
(since we use the lapse function), using 3.108 and split q into the background35 and
fluctuation q = q̂+q 1Ø q(0) = 0,q(1) = q˚ gives a final path integral of (Halliwell,
1990) (over fluctuations!)

Ψ =

ż ∞
0+

dN

ż q(1)

q(0)
δq 1e

2π2i
 h (S0+S

1) =
3πi
2 h

ż

dN
?
N
e

2π2iS0
 h (3.111)

since the second term is Gaussian, q = a2, we only need to integrate over N(ą 0),
S0 is the classical background action, S 1 is the classical action for the perturbation.
Substituting the action gives an exponent of „ N3Λ2

36 +N(3´ Λ
2 q˚´

3q2
˚

4N ) which gives
the (complex) critical points we are looking for (the crossing of steepest descent and

ascent), 3
Λ
(˘

b

Λq˚
3 ´ 1 ˘ i). The wave function with the boundary condition of no

boundary in the past but q˚ as final state is calculated, PL tells us to choose the saddle
point in quadrant I where the real part of the exponent is negative. This is the only
relevant one as only here the steepest ascent contour intersects the original contour
C and obviously the classical action is real along the real line,

ΨÑ e
´12π2´4π2

?
Λ?
3
(q˚´

3
Λ

)
3
2

 h (3.112)

Hence, the result in the exponent is minus the one given by Hawking and Hartle 7.9
(i.e. the one given by Vilenkin), it also has a constant amplitude plus a phase (as the
universe expands it can become classical due to quantum geometric dynamics only,
similar to a decoherence effect). FLT [31] proceed by calculating the effect of pertur-
bations and conclude that the probability of large perturbations of some scalar field

is quite high, |Ψ| „ e
φ2
˚(l+2)(l+1)l

2 hH2 , φ˚ is the amplitude of a frozen, dimensionless tensor
perturbation and l is the principal quantum number. Amplified perturbations wouldn’t
indicate a smooth beginning of the universe. Nonetheless, in their treatment the seem-
ingly different results of H&H and Vilenkin are actually the same, but we simply have
to choose Vilenkin’s saddle point. They also emphasise that their result impacts infla-
tion as well. The suggested uncontrolled behaviour in the beginning would have an
effect on the evolution and topology of the universe. A universe with only inflationary

33They define upward flow Jσ with dxi

dσ
= gij Bh

Bxj
Ø dh

dσ
ě 0 (and downward Kτ with minus sign

and ď), σ is a parameter along the lines. They cross at σστ. Along the steepest descend the Morse
function decreases monotonically, along the steepest ascent it increases.

34Note that H = 1
2i (I´ I) which is constant along the lines of flow.

35q̂ = Λ
3 H

2t(t´ 1) + q˚t from the eom q̈ = 2ΛN2

3
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Figure 3.13: Here one can see the four saddle points where the one in quadrant I is chosen
by PL theory. The solid orange line is the original contour C , the dashed orange line is the
corresponding deformed contour that is given by PL. We flow along theJ1 surpassing the origin
along the positive real line (needs to be finite at Ñ 0+ and parallelly up K1. The integral is
convergent for N Ñ 0, limNÑiε Ñ

ş

dNe´
i
N and N Ñ ∞, limNÑN+iε Ñ

ş

dNeiN
3
. In

the red areas the Morse function tends to infinity, in the green areas to minus infinity. Note
that the saddles 3 and 4 are the ones that Hawking and Hartle calculated. Unknowingly they
integrated over NE = iN since they start with a Wick rotation from beginning onwards. PL
tells us to use the Lorentzian integral and NOT the Euclidean one. Interestingly, if we want
to keep the H&H solution we have to add non-perturbative factors that give unsuppressed
fluctuations (they also prove that there is no contour to actually avoid that) [31].

potential energy is excluded in their calculations. Some earlier phase (such as an radi-
ation dominated one) is predicted. The issue of our universe being an unstable saddle
point was recently tackled by using Robin boundary condition instead of the usual
Dirichlet one. They found a well defined path integral, but the 3-geometries don’t
start from zero size, their origin is in a fuzzy configuration, ∆q˚0∆p˚ „  h where p is
the conjugate initial momentum. It remains a problem to deal whether the integral
should be calculated in the Euclidean or Lorentzian setting. It is important to keep in
mind that if we want universality the universe should be described by some quantum
state. Obviously, the question of initial conditions also remains open in this treatment.

3.6.3 Inflation in Loop Quantum Gravity

LQG is a tentative, non-perturbative and background-independent quantisation of GR
whose foundation relies on Ashtekar variables36, the quantum corrections are cap-
tured in the Hamiltonian of LQG. Spacetime becomes discretised. Here the Big Bang

36LQG is based on holonomies, so the exponentials of connections. Ashtekar rewrote Einstein’s GR
as a canonical theory with the variables of a selfdual spin connection and its conjugate momentum -
analogue to Yang Mills gauge theory. Smolin then showed that the Wilson loops of the connection are
solution of the (Wheeler-deWitt) WdW equation. Quantum states are the intersections of those loop
(Rovelli, Smolin). Along with Penrose’s combinatorics formulation they later developed the theory of
spin networks and spin foam.

56



becomes a big bounce due to large repulsive quantum-gravitational (= quantum-
geometrical) effects. In some models LQG inflation (called super-inflation) is then
followed by the standard SR inflation type. The origin of this bounce can be seen
in the Klein-Gordon equation, the friction term becomes anti-friction during the pre-
bounce stage, where the universe is contracting (H ă 0). This forces the field to
massively oscillate. Inflation is then a natural process [10] [73]. According to LQC
(loop quantum cosmology, the application of LQG towards the universe as a whole)
there is no infinite density, but an upper limit.
Already mentioned in VSL where the speed of light is an emergent concept, in LQG
Lorentz invariance is, so there would be a natural connection. Mielczarek claims that
the modification due to the quantisation of spacetime results in a density-dependence
of the speed of light. With increasing density, the speed of light decreases, at ρ =
0.5ρc, the speed of light vanishes such that different points would become causally
disconnected. Interestingly, speeds larger than 0.5ρc become imaginary numbers.
There would be no more notion of time, time turns into space (spacetime becomes
Euclidean) [49].
Bouncing from inflation or instead of inflation has been proposed in various other the-
ories as well. Some argue that the Big Bang and the multiverse can be eliminated with
this. When contraction starts the universe is large i.e. classical GR dominates and the
universe bounces before it can actually shrink to size where quantum effects become
important. Further explanation can be found in the next chapter.

3.7 Dark Energy and Inflation

Finally, I would like to briefly mention the issue of dark energy and compare it to in-
flation (as far as it can be compared as both aren’t understood).
Dark energy is yet an unknown, but most dominant, form of energy today. It causes
the universe to expand at a constant/nowadays accelerating rate. Supernova measure-
ments and galaxy observations have given sufficient evidence. Experiments coincide
with about 70% dark energy content of the universe, measured in ΩΛ0. The expan-
sion goes also along with measurements of the Hubble parameter which disagree by
almost 15% which is also due to technical difficulties since it isn’t that simple to mea-
sure the distance of far galaxies and cepheids aren’t that common to find. The density
parameter is the fraction Ωi0(t) = 8πGρi0

3H2
0

, so the dimensionless ratio of its density
and the critical density of the universe (which is time dependent).

Ωm0 +Ωr0 +ΩΛ0 +Ωk0 = 1 (3.113)

where the matter content (proven by the power spectrum of the spatial distribution
of galaxies) is 0.25 (with a part of 0.2 for dark matter), a tiny fraction of 10´4 for the
radiation content (accounting for the CMB and neutrinos) and a vanishing curvature
part Ωk0 = ´ k

a2
0H

2
0
.

Introducing the redshift factor 1+ z = a(t0)
a(tem

(hence, using ρm „ a´3 „ (1+ z)3 etc),
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the evolution equation and acceleration equation can be rewritten as(
ȧ

a

)2

= H2
0(Ωm0(1 + z)3 +Ωr0(1 + z)4 +Ωk0 +Ωk0(1 + z)2)

ä

a
= ´H2

0(
1
2
Ωm0(1 + z)3 +Ωr0(1 + z)4

´ΩΛ0))

(3.114)

Both, inflation and dark energy, hence explain the universe’s expansion. The former
describes the rapid expansion in the early times and the latter today’s late times and
might give a prediction for the fate of our universe, whether it will expand forever or
eventually recollapse. The cosmic acceleration is often described by a positive cosmo-
logical constant (but as I will discuss it shouldn’t be called equivalent).
However, it is not known why it is so small and why it dominates the universe’s content
(or rather why, on macroscopic scale, it recently started to dominate). The value of Λ
is 3H2

0ΩΛ0 and using Planck2018 data equal to 1.1057 ¨ 10´52m´2 giving a vacuum
density of ρvac = Λ(8πG

c2 )´1 „ 5.924 ¨10´27 kg
m3 ([20] gives 5.96). I have already used

the cosmological constant when describing the de Sitter state a „ eHΛt and when
using the SR approximation which gives a classical cosmological constant for ρ = ´p.
If one compares the density to the Planck density (see appendix 7.2) there are 122
orders of magnitude difference. The cosmological constant problem is the massive
disagreement of the observed value and the theoretical prediction of the zero-point
density 37 between 120 and according to recent calculations 60 orders (taking Lorentz
invariance into account. The Casimir force can be calculated and measured between
two mirrors in only vacuum due to the pressure of vacuum fluctuation.). Rewritten in
GeV the density would be about „ 10´47GeV, many orders above the vacuum fluctua-
tion contributions, „ 2 ¨ 1071GeV4 (Weinberg, 1986).
In Einstein’s field equations it acts as an additional source for curvature (the associ-
ated energy has a dimension of [L]´2), hence, its effect on scales is „ 1?

Λ
. Λ ą 0 is a

repulsive form of gravity which we recall was the idea behind inflation. The value of
the dark energy is also important in validating inflation and the Big Bang theory as it
provides us with the apparent missing matter density that would rule an almost flat
universe.
Back to the issue of dark energy. There are three proposed solution[61] (which might
be the same or different and dark energy is the sum of them).

1. A cosmological constant as zero-point radiation of space i.e. the vacuum energy
with w=-1.

2. A scalar field similar to slow-roll with a changing equation of state.

3. A non-zero vacuum energy due to vacuum fluctuations of quantum fields which
should be explained by usual QFT.

The first option was described above. The second one, also called quintessence and
intensively investigated in Susy, predicts a scalar field rolling down a potential in a very

37The vacuum fluctuation density is calculated similar to the Casimir energy by summing over
all ground states of the fields, their (self)interactions up to a cutoff frequency, „ Λ ă m where
m is the mass of the field. For one field, say, summing over all normal modes gives ă ρ ą=
şΛ

0
dk4πk2

(2π)3

?
k2 +m2 „ Λ4

16π2 „ 2 ¨ 10´10π´4.
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similar way to the one of cosmic inflation. Other than for the classical cosmological
constant the equation of state is time dependent, w(t) = P

ρ
ą ´1. This might predict

a different evolution that could be tested. On the other hand the evolution might be
so slow that it cannot be distinguished from the cosmological constant.
There are two types, the ’freezing’ (decreasing w(t) that approaches ´1 at low z)
and ’thawing’ (w Ñ ´1 at high z with possible deviations at low z) one. The latter
one is quite similar to inflation with a graceful exit. It was also shown that potentials
associated to those models give an attractor mechanism38 (some details can be found
in the appendix, 7.2, 7.11. Zel’dovich (1967) first suggested a connection between the
vacuum energy density and the cosmological constant. It is important to distinguish
between dark energy in form of a cosmological constant added on the ’spacetime’ part
of the Einstein equations and an additional dark energy density on the matter energy
side.

Gµν +Λµν = 8πTµν Ø Gµν = 8π(Tµν ´ ρDEgµν) (3.115)

Is it coincidence that there are two eras of accelerated expansion? Some research has
been going on whether the nature of inflation and today’s expansion has its origin
in the same source. The cosmological constant didn’t dominate in the early universe
as matter and earlier radiation were increasing whereas the cosmological constant
density is assumed to have stayed constant. Nonetheless, it has been proposed that the
cosmological constant has been time dependent (in the AS chapter it will be shown that
G and Λ are both scale dependent, hence, at early times the dimensionless running
coupling of Λ might indeed cause inflation as well).
The authors of [18] proposed that an almost massless scalar field,m ă H0, causes the
accelerated expansion today (quintessence type). This field should have experienced
quantum fluctuations in the early universe during inflation and then froze until it
recently began to dominate the energy content again, with the condition that its mass
is smaller than the Hubble constant today. The fluctuations can be used to allow
all kind of values for the value of dark energy and using the anthropic principle we
measure exactly the low value today. Similar to before they write the fluctuations of
the field

φ(~x, t) = φ(t) + δφ(~x, t) (3.116)

as

|δφ~k|
2
„
H2

inf

2k3

(
k

aHinf

) 2m2

3H2
inf (3.117)

with ~k being the comoving wavevector. Taking into account the Fourier modes after
the Hubble exit a sufficiently long inflation is given by

ă δφ2
ą„

ż aH

aiHinf

d3k

(2π)3
|δφ~k|

2
„

3H4
inf

8π2m2
(3.118)

The resulting potential is independent of the scalar field’s mass

V(φ) „
1
2
m2
〈
δφ2

〉
„

3H4
inf

16π2
(3.119)

38A system, here the universe, evolves to a certain state or set of states for a large range of initial
conditions. If values get slightly disturbed near the attractor they remain close to it.
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Dark energy is given for V „ ΩΛ0
3m2

pH
2
0

8π Ø Hinf „ Ω
1
4
Λ0(
?

2πH0)
1
2 , with Planck18

data and converting to eV H0 „ 2.8 ¨ 10´33eV gives a value of 6 ¨ 10´3eV . The au-

thors conclude by calculating the corresponding energy during inflation Einf = ρ
1
4
inf =

(
3m2

p

8π H
2
inf)

1
4 „ 5TeV which is about the scale where the EW symmetry breaking should

have occurred. They numerically solved the equations and compared it to cosmologi-
cal data.
A major difference to the common inflation scenario and dark energy is that latter still
has a positive energy density. It violates SEC as inflation does as well 7.3.2.
Further, using a scalar field as comparison 7.4, we can take a look at the deceleration
parameter, q0 = ä0

a0H
2
0

(negative value of q: accelerating expansion, positive: deceler-
ating expansion). Adding the acceleration equation of Friedmann with the cosmologi-
cal constant to the first Friedmann equation with cosmological constant and curvature
and usingΩΛ+Ωk+Ωm = 1 at all times (where we neglect the radiation part since
we know that it is vanishing small and won’t increase), gives

1
2
Ωm0 ´ΩΛ0 = q0 (3.120)

This gives an approximation for when the universe’s expansion is accelerating, 1
2Ωm0 ă

ΩΛ0, which is valid today.
We can rewrite the Friedmann equation in a form where the energy form becomes
more obvious. Setting H0t = T and Y(T) = a(t(T))

a(t(T))
we have the dimensionless equa-

tion (ρm „ a´3, dY
dT

=
˙a(t)

a0H0
): (

dY

dT

)2

+ V̂ = Ωk0 (3.121)

with the ’potential’ V̂ = ´Ωm0
Y
´ΩΛ0Y

2. The ’total energy’ is given by the curvature
density parameter near 0, ΩΛ0 ą 0. This gives a maximum of the potential at Y =
Ωm0
2ΩΛ0

. If the field has rolled beyond that point it will expand with an ever increasing
rate forever, which would be today’s state.
Weinberg first proposed the idea that the small value of the cosmological constant is
simply a random choice if one assumes a multiverse where each universe has its own
vacuum and its own value for Λ. It follows to argue with the anthropic principle, that
without this value galaxy formation wouldn’t be possible (either big rip or big crunch)
and we wouldn’t be able to measure this value. This brings us to the discussion of
inflation’s problems.
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Chapter 4

Problems of Inflation

There are only certain intervals of time when life of any sort is possible
in an expanding universe and we can practise astronomy only during that
habitable time interval in cosmic history.

(John D. Barrow)

1 As it was shown in the previous section inflation was introduced to solve the cosmo-
logical problems. It can explain the homogeneity and isotropy on large scales, the ir-
regularities due to cosmological perturbations and the absence of magnetic monopoles.
Predictions of inflation have been confirmed in experiments and observations. On one
hand inflation has been almost accepted as a confirmed theory, on the other hand there
has been increasing critique in the past years. I will investigate major problems in the
following. As I go along I will also present counter arguments against the typical
criticism brought forward by some physicists.

4.1 Fine Tuning Again
2 Inflation itself is criticised for producing again constraints on initial conditions or the
need for fine-tuning. In the simple SR setting we used the SR parameters (ε, |η| ď 1
with the end of inflation given by ε = 1) and the number of e-folds (at least „ 60) to
put constraints on the potential (such as the mass or coupling), 7.7.4. It turns out, de-
pending on the model, they are rather small. For example, the potential V „ λφ4 gives
60 „ N = π

m2
p
(φ2
i ´ φ

2
f) with ε giving φf =

mp

4π , the initial value can be calculated

and with the constraint V ď m4
p (beyond quantum gravity effects become dominant)

λ ď 0.03. Also, the density perturbations give a constraint. Estimating (see 3.5.1)
δρ
ρ
„ 10´5 „ H2

φ̇
„ V

3
2

V 1
where the last approximation is done with SR condition gives

1Sadly, Prof Barrow passed away in September. He addressed many foundational issues in theoretical
physics, especially in cosmology and inflation, but also in maths and philosophy. In his opinion those
problems may seem troublesome ’fundamental problems’, because we are simply thinking the wrong
way.

2The anthropic principle has two version. The weak version says that the universe has to provide
certain properties since otherwise our existence would simply be not possible. The strong version says
that our existence CAUSES the universe’s nature.
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a constraint on λ „ 10´9, a rather small coupling. An accurate measurement of r
would set further bounds. As I have shown chaotic/eternal inflation doesn’t put as
much constraint on the values. A sensitivity to initial conditions might be caused by
inhomogeneous initial conditions of the scalar field itself since it is basically possible
that they froze in during the expansion and will effect the universe at some point in
the future.

Figure 4.1: Large field (LF) model where the
field rolls down to its potential minimum from
a high value and small field (SF) model where
the scalar field is in an unstable maximum and
forced to run down. A hybrid model has a vac-
uum value different to zero. Convex poten-
tial with V 2 ą 0 and concave potential with
V 2 ă 0. See also 7.3.1, 7.1.

On the other hand the SM of particle
physics suffers from small coupling con-
stants as well, this shouldn’t necessarily
be seen as critique of inflation. Moreover,
initial conditions do matter in classical
physics, it isn’t entirely proven whether
initial conditions shouldn’t matter here
as well.
Secondly, it is rather unlikely to find the
field at rest at a high potential. The con-
straints are unnatural, but necessary for
SR to occur (V must be constant near
φ = 0, small parameters, the curvature
of the potential near the critical value
needs to be large enough s.t. it oscil-
lates at high frequencies after inflation).
If one wants to not allow eternal infla-
tion, fine.tuning needs to occur such that
quantum fluctuations don’t set in (shown
in eternal inflation that it is rather proba-
ble that eternal inflation does set in). We
seem to classify observables that don’t
produce natural numbers ’naturally’ as
fine-tuned. If a theory’s parameters are
all of the same order (ideally unity) we
call it a natural theory. This is already
troublesome for a theory of quantum
gravity that would intuitively connect the
small and large scale, see also 7.5. How-
ever, physicists don’t fully agree on that
notion, in the end, those value might be
coincidence only and not a problem of physics, but a problem inherited by us.
Ijjas, Steinhardt and Loeb (2013) (ISL) criticised inflation for a similar reason. It can-
not be tested since its predictions can be changed by different initial conditions or small
changes to the potential (see also point on falsifiability below). They also put forward
that inflation leads to a multiverse (for eternal/chaotic inflation) that in the end can-
not provide a predictive theory and needs fine-tuned conditions that our universe has
actually developed. However, if inflation starts in a chaotic state, there is a nonzero
probability that there exists a smooth patch what will inflate and dominate which we
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can observe.
Linde argues in his self-reproducing eternal inflation model that a large field value can
lead to large quantum fluctuations that again may locally increase the value of φ in
at least some domains of the universe which can then expand at a greater rate and
produce new inflationary regions forever. We can only observe our universe since the
different universes (where all types are possible) are separated. Inflation continues
for separations larger H´1 and we can only see inside our horizon. And we live in
exactly this universe as it provides the properties we need. Additionally, ISL actually
cannot provide this argument since they also put forward the issue of the measure
problem such that a (low) probability cannot be calculated.
Lastly, full numerical general relativity [33] has provided computer simulations of the

Figure 4.2: Lim, talk 06/20. Convex potentials cannot fail against inhomogeneities.

actual dynamics of spacetime and showed that inflation can start without constraints,
even in rather unsmooth regions3. Lim et al. also name three options for the apparent
fine-tuning problem of initial conditions: either is is indeed fine-tuned or there exists
some dynamical process that makes the IC irrelevant (inflation) or there is some un-
known theory that defines an ensemble and chooses the IC i.e. there were indeed IC,

3talk June 2020, Imperial College based on [33]
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but it shouldn’t be a ’problem’ and then there wouldn’t be a need for inflation - an al-
ternative explanation for the LSS and perturbation observations etc. is not given. We
would define the cosmological problems as ’problems’ since we would expect another
state to occur. The problem is that we don’t have a proper definition for a sample
space as there is only one universe that we can/have observe/d so far. The analysis is
based on the Komatsu-Tesileanu Bayes argument,

P(model|data) =
P(data|model)P(model)

P(data)
(4.1)

We want to infer the LHS, it is assumed that P(model) exists and P(data|model) can
be evaluated from the data and constraints. The aim is to find a joint measure of the
space of IC (initial values of the variables of the theory space) and the model space
(different models/dynamics of inflation) whose clear distinction hasn’t been well em-
phasised in the probability problem of inflation 4.4. Numerical relativity then chooses
a model with certain IC and they investigated what would happen if inhomogeneities
existed. The power spectra of various models and the reheating temperature were
calculated [50].
ModeCode (http://modecode.org/) is a numerical solver for perturbation equa-
tions in inflation not necessarily depending on the SR approximation and test the
robustness against inhomogeneities (for single fields, further simulations for more
complex models are in their development - however, even the simplest treatments
take already a lot of computational work). Convex potentials are favoured, con-
cave potentials4 are more robust if they vary on super-Planckian scales rather than
on sub-Planckian ones. Planck18 favoured concave potentials. Hence, the varying
should then be in the super-Planckian regime. Any assumption of pre-homogeneity
are dropped, Lim proves 4.2 that convex potentials cannot fail against such inhomo-
geneties, but concave can fail. This shouldn’t actually be seen as a failure of concave
potentials but rather as a selection principle for which concave models inflation still
successfully occurs. His ansatz of field perturbation is φ = φ0 + δφe

ikx into the KGE

φ̈+ 3Hφ̇+ k2δφ = ´V 1, k = 2πnH (4.2)

At φmax we find
φ̈+ k2δφ = ´V 1(φmax) = ´f(φmax) (4.3)

Negative f values give a roll-down behaviour (failed inflation), positive values give a
pull-back behaviour (success).
The maximum of the function is given in the pull-back (=concave) regime.

Bf(φmax)

Bδφ
= 0 = k2 + V 2 (4.4)

where the first term is always positive and the second derivative of the potential needs
to be positive in order to be nonzero (=robust), whereas a negative value can set the
function to zero and hence fails inflation. He tested different potentials and found

4Convex potentials satisfy V 2 ą 0 - curving upwards- such as in chaotic inflation. Concave inflation
is given by V 2 ă 0 such as in Starobinsky inflation.
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constraints on initial conditions.
MultiModeCode is a code that provides Monte Carlo samples of probabilities for differ-
ent models, their parameters and initial conditions, also for multi-field models. They
use a similar probability approach as Lim,

P(Θ|D,M) =
P(D|Θ,M)P(Θ,M)

P(D|M)
, P(D|M) =

ż

P(D|Θ,M)P(Θ|M)dΘ (4.5)

where M is the model, D the data measured and Θ is the set of parameters (power
spectrum, late-time parameters and the parameters for the experiment).
Let’s also investigate the Starobinsky model that fits so nicely with the Planck data.
If we want to get a constraint on the coefficient of R2 we see that it is rather large,
„ 1010 giving a mass of m „ 10´5mp which is rather small. This will be explored
later in detail.

4.1.1 Penrose’s Alternative

Penrose suggested that initial conditions are ’caused’ by the second law of thermo-
dynamics [54], better in order for the second law to function the initial conditions
were necessary. Specifically, he connects the homogeneity of the universe with ther-
modynamics and introduces the concept of gravitational entropy. The second law of
thermodynamics postulates an increase of total entropy for an isolated system, here
the universe, ∆S ě 0. Penrose suggests a coarse-graining of phase space with volume
V („number of microstates)5, S = kB logV . Introducing the notion of gravitational
entropy the universe was in a state of low entropy by accounting for the dof of the
gravitational field. One might wonder how to count gravitational dof. In electromag-
netism one has the Maxwell tensor Fµν and its source in the current~J. An analogy can
be drawn to Fµν Ø Cµναβ, so the trace-free part of the curvature measure Rµναβ,
and the Einstein tensor „ Tµν Ø ~J. He postulates the Weyl curvature hypothesis:
The universe is constrained by the effective vanishing of Weyl curvature at any initial
spacetime singularity (later sometimes also corrected to a finite value only). The low
gravitational entropy state increases with the universe’s evolution and increasing Weyl
curvature which makes the second law of thermodynamics possible and induces the
arrow of time. The constraint must have been in the spacetime geometry. The tidal
distortion gives a measure for it:

D2qβ = Rβµναt
µqνtα (4.6)

which is the geodesic deviation equation with the unit timelike tµ and connecting and
orthogonal vector qµ that measures the displacement of neighbouring particles. It
can be rewritten in a form where the importance of the Ricci tensor as volume change
measurer becomes more obvious.

D2∆ = Rµνt
µtν (4.7)

∆ is the 3-volume induced by three independent qs. Now, tidal distortion is measured
by the remaining curvature if the Ricci tensor vanishes. The Riemann tensor can be

5Obviously, it is difficult to define what is macroscopically indistinguishable, but this shouldn’t matter
too much when calculating ratios.
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written as the trace-free and other part Rµναβ = Wµναβ + Qµναβ where the for-
mer is the Weyl curvature tensor that depends on pure gravity only whereas the latter
depends on the Ricci tensor and hence the energy-momentum tensor hence matter
(simply have a look at the Einstein field equations). Penrose concludes that the Ricci
tensor as matter distribution basically measures the volume change and the Weyl ten-
sor presenting gravity only measures the tidal distortion.
Gravitational entropy6 is now dominated by the amount of Weyl curvature. Since
there is no proper measure for spacetime entropy other than the formula for black
holes SBH = kc3A

4G h
he uses this and estimations on matter to calculate the ratio of the

entropy at the Big Bang and today or a possible Big Crunch scenario (he assumes a
closed universe).
Unfortunately, he doesn’t explain where the numbers come from [54]. In an expand-
ing FRW universe (=sequence of maximal expanded regions) he assumes a number
of at least 1080 baryons7 and today’s CMB contributes 108 entropy per baryon giving
a total of 1088, this entropy increases when black holes and LSS structures are taken
into account. Using the formula for black hole entropy he gives a maximum entropy of
10123 (all black holes ’end’ the Big Crunch) and today’s value somewhere in between
of 10101 with some massive black holes in the centres of the galaxies (all taken in nat-
ural units). Where the entropy can be rewritten in terms of the mass (for a spherically
symmetric black hole) SBH = 2kBm2πG

 hc
per baryon adding about 35 orders for black

holes only and a typical mass is m „ 4 ¨ 106Md, 1021 per baryon entropy.
Thus, there was a very big constraint on the universe at the beginning. Why was
the Big Bang of such low entropy, if a possible big crunch would be so chaotic? The
number of states is the exponential (for such high numbers it doesn’t matter to take
10 instead of e, exponential), our universe if randomly chosen would have been con-
strained to one in 1010123

. Note that if one follows the Big Bang theory the matter
entropy should have been high as a thermal equilibrium is assumed. Further, he as-
sumes the origin of this constraint in some new physics, possibly a theory of quantum
gravity? The strong version of the Weyl curvature hypothesis says that the spacetime
metric can be rescaled to extend the conformal structure of the Big Bang where the
Weyl curvature vanishes on the surface. The hypothesis plays an important role in
Penrose’s CCC (cyclic conformal cosmlogy) where the conformal geometry8 removes
the singularity, each futurelike infinity is a Big Bang for the next universe (i.e. not a
multiverse, but the ’same’ universe recollapsing and expanding)9. The universe had

6The Weyl scalar as quantification for entropy was proposed, but disregarded earlier (Goode et al
1982, Rothman et el 1997).
Later S =

CµναβC
µναβ

RµνRµν
was proposed - following Penrose this would be the ratio of tidal distortion

per volume change, but also criticised. The Bel-Robinson tensor that consists of the Weyl and its dual
tensor was suggested as well (Pelavas 2006).

7This agrees with Pailla’s et al (2017) estimation where he uses data from Planck. He multiplies the
total density by the fraction of the baryons’ density and the volume of the universe in order to get the
total mass of baryons. Then, he divides it by the mass of one baryon.

8Conformal geometry defines a measure for angles, but not distances or lengths. The metric can
measure angles, but measurements of angles don’t predict the metric uniquely. Still, at any point the
ratio of two lengths coming from different directions is known.

9A rigorous mathematical derivation can be found by P. Tod (2010, 2013). He proves that the 3dim
Big Bang surface is a smooth boundary for the spacetime in the past which is a conformal manifold. He
actually claims that the Weyl tensor is constant. FRW symmetry isn’t assumed anymore, but emerges.
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Figure 4.3: Gravitational entropy. Ordinary gas shows a behaviour of increasing entropy
corresponding to an increasing uniformity in the distribution. However, gravitational entropy
is associated to an increasing clumping of matter, with the maximum entropy being a black
hole.Along with that the Weyl tensor increases. Our universe starts in a tiny region of low
gravitational entropy and goes through phase space until the largest volume and thermal equi-
librium is reached. The corresponding equilibrium in gravity is difficult to define. Taken from
[54].

its initial condition for the second law to arise (which leads in some sense to the an-
thropic principle). In my opinion one should investigate where the past (low) entropy
was located. Or rather, what was out of equilibrium in the early universe? What are
the degrees of freedom and how ’much’ entropy can a dof produce. Along with that
we need to further study the thermal history of the universe since there is undoubtedly
a connection to statistical thermodynamics. We will see that entropy might arise from
AS’ renormalisation group flow only. One should also review Penrose’s argument on
the level of coarse-graining. The act of defining a coarse-graining itself defines what
is probable and what isn’t. Entropy on macroscopic and microscopic levels should be
defined differently. Further treatment can be found in 7.7.7 where I prove that his
constraint that the Weyl measurement should also give the black hole entropy is only
valid for a five dimensional spacetime.
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4.2 ’Multimess’

In an eternally inflating universe, anything that can happen will happen;
in fact, it will happen an infinite number of times. Thus, the question of
what is possible becomes trivial—anything is possible [. . . ]

(A. Guth — Eternal inflation and its implication, 2007)

As Guth claims almost all inflation models lead to a multiverse, but so far there is no
proof (as it needs to be looked at for each model or model class). One should be
careful with the definition of multiverse. Tegmark [80] classifies four levels. The level
1 multiverse is well-accepted in cosmology and describes the idea of eternal inflation
that produces separate mini/pocket universes with the same laws of physics. We don’t
have any observational evidence since causal contact is impossible (at least for now).
The level II multiverse mainly put forward by Vilenkin refers to physical universes that
are continuously produced to far away to be observed with same fundamental equa-
tions of physics but perhaps different constants and particles and unobserved forever.
Level 3 (Everett’s multiverse - all possible histories of the universe do happen and our
universe exists in all those histories, a quantum multiverse assuming cosmic unitar-
ity) and level 4 (the physical universe is mathematics and can describe all possible
structures available in the mathematical theory, hence different fundamental physics
is possible) aren’t of much relevance for this thesis. For this thesis it is sufficient to
distinguish between 1. multiverse by eternal inflation 2. the many-worlds interpre-
tation of quantum mechanics and 3. the string theory landscape and focus on the first.

The issue of eternal inflation is that it results in a multiverse where due to the ran-
domness of the quantum fluctuations in the early universe all kind of universes are
possible. Steinhardt et al. call it the ’Multimess’ as it firstly makes probability calcu-
lations impossible (see below) and secondly makes inflation in some sense redundant
as it would be a theory of all possibilities and couldn’t predict anything.
On the other side, the multiverse gives a natural explanation for the anthropic prin-
ciple. All the observed parameters, ranging from the fine structure constant to the
value of dark energy today, have their precise values as in the infinite randomness of
the multiverse there is a non-zero probability and we as we can only live under such
conditions. The separate mini universes might have different laws, different low en-
ergy physics, different values of energy densities etc.10

The Hamiltonian evolution in an infinite phase space (which is the case for the mul-
tiverse in the eternal inflation setting) in contrast to a finite one without eternal in-
flation can lead to fine-tuning of parameter if one follows Liouville’s theorem11 If the
probability for an event is rare in a finite space it isn’t probable that its probability
increases, it remains a rare event. In fact, in eternal inflation one can give an example
for such an evolution that shows that arbitrary fine-tuning is possible (L. Guth): The
time-independent and bounded (from below) HamiltonianH = tan´1(´pq) gives the

10Weinberg (1982) claimed that we live in a universe governed by SU(3)xSU(2)xU(1) since ’our’
inflation puts us in that minimum.

11The phase space distribution function remains constant along any trajectory, dp
dt

= 0 where p is
the phase space distribution depending on time, canonical value and conjugate momenta.
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equation of motions

ṗ =
p

p2q2 + 1

q̇ =
q

p2q2 + 1

(4.8)

where p2q2 is fixed. When p grows exponentially, q decreases. For any normalised
initial probability distribution with ε, δ ą 0, there exists a time t 1 such that for
t ą t 1 p(|q| ă δ) ą 1 ´ ε meaning we can arbitrary fine-tune which then gives
a generic result.
ISL claim that a solution would be a bouncing cosmology, as it was proposed by Stein-
hardt et al. in 2001. The Big Bang is not the beginning, but a bounce of a previous
contraction to an expansion phase. Therefore, the flattening of the universe is before
’our’ Big Bang. Gravitational waves produced by quantum fluctuations and hopefully
visible in the CMB one day would have a smaller amplitude than the ones predicted by
inflation (because it doesn’t predict such high energies). There is no multiverse and as
the contraction starts the universe is large i.e. classical (GR) and bounces back before
it can shrink down to a size where quantum effects would dominate there is also no
Big Bang in the sense of a singularity which eliminates the problem of quantum grav-
ity, the transition from ’quantum’ to ’classical’. The contraction phase is ultra-slow
(ekpyrotic) and the parameters, such as H, ρ and T oscillate periodically. Whereas
H(t) oscillate between large positive and negative exponential values, a(t)’s expan-
sion is longer and its contraction shorter. This then produces over many cycles a de
Sitter like universe (Ijjas, Steinhardt 2019) 4.4. They argue that this can solve the
coincidence problem12. As I explained in the motivational part the smoothing prop-
erty leads to inflation, ISL describe a universe that undergoes supersmoothing through
slow contraction. They distinguish four smoothing types that are necessary for today’s
state [83].

1. classical smoothing - classical inhomogeneities and anisotropies must be sup-
pressed

2. quantum smoothing - quantum fluctuation are suppressed

3. robust smoothing - evolution is independent of initial conditions

4. rapid smoothing - sufficient inflation before phase exit

where the first two have been well established, mainly by perturbative treatment and
the latter two are analysed with numerical gravity and non-perturbative theory. The
first can again be written in mathematically form as

H2 =

(
ȧ

a

)2

=
1
3

(ρm
a3

+
ρr

a4

)
´
k

a2
+
σ2

a6
+
ρφ

3a2ε
, ε =

3
2

(
1 +

p

ρ

)
(4.9)

with the matter and radiation content, curvature, shear and scalar field matter, re-
spectively. For the domination for decreasing a, ε ą 3 (slow contraction) and for

12The coincidence problem isn’t clearly defined, but captures the fine-tuning of parameters of dark
energy and matter content that we observe today.
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inflationary expansion as usual ε ă 1. For quantum smoothing the former is substi-
tuted by ε ą 2.
Whether we can ever test the multiverse is not known. For the chaotic model it was
proposed that we might observe imprints when our universe collided with another.
Further, tests of the topology of universe might also rule out the chaotic scenario, for
example, if it is closed (like a torus), so finite, eternally chaotic inflation would be
ruled out. Such observations would be repeating patterns in the CMB.

4.3 Physics/Mechanism not Clearly Understood

Figure 4.4: Ijjas and Steinhardt cyclic universe
(2019), ’A new kind of cyclic universe’ showing
the oscillatory evolution of the Hubble parame-
ter with long expansion and short contraction.
The scale factor increases non-periodically os-
cillatory.

As it was shown the exact mechanism be-
hind inflation is not known. If an inflaton
field exits it is not know what scalar field
it is. Until now we have only observed
one scalar field, the Higgs field. Some re-
search is dedicated to whether the Higgs
and inflaton field are the same, but until
now without sufficient evidence. Along
with that it leaves the question what kind
of energy source causes inflation. The
usual proposed scalar field that can cre-
ate negative pressure can maybe only be
found at high energies. However, we
know that accelerated expansion is def-
initely possible as we measure it today
and call it dark energy - whose physics
we also don’t understand. The Higgs
field has been proposed as scalar field for
inflation (Calmet, 2016) where it is non-
minimally coupled to gravity. The stan-
dard Higgs potential is not flat.

V = λ(H:H´ ν2)2 (4.10)

Coupling the field to curvature gives a La-
grangian of

L „
R

16πG
´ ηH:HR+Lint (4.11)

In the Einstein frame this can be rewrit-
ten (similar to Starobinsky inflation, look

for ĝµν = Ω2gµν with Ω =
b

1 + h2

8πm2
p
) as a Lagrangian of

L „ ´
mp

16π
R̂+

1
2
δµχδ

µχ´ V̂ (4.12)
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and

dχ

dh
=

d

Ω2 + 48πη2h2

m2
p

Ω4
(4.13)

in the unitary gauge,H:H = h2, with the potential V̂ =
λm4

p

4(8πη)2

(
1 + e

´
2
?

8πχ
?

6mp

)´2

. It is

flat for χ " mp and SR inflation follows and the density perturbation constraint gives
a non-minimal coupling of η „ 104 which ensures that λ is sufficiently low and the
mass of the field corresponds to the Higgs mass mH = 125GeV„

?
λµ (Steinwachs,

2018). For large fields, h " mp
?
η

the potential V̂ is flat. The problem is that at high
energies quantum loop corrections of the SM particles need to be taken into account,
there is a difference of about 14 orders between the energy scale at inflation and µ,
the running needs to be investigated as well, λ is rather small in the early universe.
Especially, the quantum corrections of the effective potential put a dependence on the
spectral indices. In fact, the renormalisation group flow drives λ to negative values
at the electroweak scale at high energies (Degrassi, 2012) which would result in a
negative global minimum somewhere below the inflation energy scale and the further
evolution would be very different from today’s universe as it would destabilise the
EW vacuum. Higgs inflation is similar to the Starobinsky one, but the latter doesn’t
suffer from this problem. There is also the claim that inflation might be due to the R2

term which itself is triggered by the large non-minimal couplings of the Higgs to the
curvature. On the other side one could look for a way to stabilise the RG improved
Higgs potential or prevent the decay of the EW vacuum.
So far no model has been as convincing as it would have ruled out all others, but
rather inflation has turned into a framework or a large class of hundreds of different
models that all make the exponential expansion in some sense possible. The evolution
of the universe is dependent on the model chosen. Hence, can inflation be classified
as a theory if it provides such a large number of possible evolutions?
It is not clear at what energy scale inflation took place 7.7.2 or how long it lasted. In
some models it is also not clear how inflation would have ended. In chaotic inflation,
for example, there is a probability (due to large quantum fluctuations) that inflation
will never end and starts dominating the universe.
Inflation (at least the classical type) doesn’t claim to solve the singularity problem, but
still is embedded in FRW which has a singularity in classical GR.
As I have shown in 3.4.1 the reheating mechanism is dependent on the model and
not fully understood. For example, it is not clear how the inflation field is coupled to
normal matter. One requires a realistic theory of elementary particles.
Where did the energy for inflation come from? Depending on the model we need a
scalar field in a potential with sufficient high potential energy. If we suppose that the
total energy of matter and gravity is conserved equals 0. The total energy during the
Big Bang of radiation must have been more than today ą 1053g, where the number
of photons shouldn’t have changed much, but the energy did (depending on the tem-
perature), with a Planck temperature of „ 1032, 1053 ¨1032g = 1085g at the beginning
of inflation. During the inflationary period the energy density stayed constant, the
volume „ a3 increased as „ e3Ht, such that the energy scaled as „ e3Ht. If we then
assume that the decay of the inflaton field means the transformation of all energy
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into energy per mass of particles and as mentioned, E = 0 meaning Emat „ e
3Ht and

Egrav „ ´e
3Ht.

The energy available in the beginning, following Heisenberg’s uncertainty principle
∆t „ m´1

p , was of Planck scale.The density of (dimensional analysis) for the false

vacuum is assumed to be at the GUT scale, ρf „
E4

GUT
 h3c3 „ 2.3 ¨ 1081 g

cm3 .
During inflation the density (and pressure assuming scalar field inflation and fluid
cosmology in FRW) stays constant while the volume is increasing, there is a massive
increase in the total matter-energy. Guth describes it as ’free lunch’, it violates the
strong energy condition, 7.3.2.

4.3.1 ISL Criticism (Again)

Ijjas, Steinhardt and Loeb [3] claim that Planck data disfavours the ’simplest’ inflation
models (where the definition simple is not really put forward)- In their opinion, infla-
tion has become a flexible idea that can produce any model that fits to the measured
curvature, amount of matter, power spectrum (red/cold hotspots in the CMB) etc. In-
flation explains what we see, but not necessarily why and how it was formed. The
data of 2013 disfavours according to them simple models, SR is only possible under
fine-tuning. The favoured models are rather plateau-like potentials. This results in the
initial conditions problem and the unlikeliness problem, along with the already men-
tioned unpredictability problem in the multiverse scenario. The favoured potentials
are ’exponentially unlikely according to the logic of the inflationary paradigm itself’.
As properties such as non-Gaussianity are small, a large class of models is already dis-
favoured. The comparison is done for single scalar field models by comparing ns and
r which indeed favours inflation models with a plateau in the potential. Such a po-
tential exists in symmetry breaking models as in new inflation, some natural inflation
models13, R2 and hilltop models. For latter the field is near the maximum of the po-
tential and usually predicts a mass of far below the Planck mass. Here one needs more
fine-tuning in order to solve the cosmological problems than for a ’simpler’ model such
as powerlaw inflation. It is then a paradox that Planck data favours a model that is
unlikely. Reason is the following. In most models the potential is plateau-like on one
side and powerlaw-like on the other (for example, see 3.20). Hence, the minimum
can be reached in two different ways via slow rolling from the steep powerlaw side or
the plateau one. There is no reason why the scalar field should roll down the more
unlikely plateau. Nonetheless, this is favoured by the observational data. If I want to
compare simple powerlaw, V „ λφ4 with∆ ď mp

λ
1
4

, and say plateau-type of Higgs infla-

tion14, V = λ(φ2 ´φ2
0)

2 with ∆φ ď φ0 „ mp (it has a plateau for |φ| ăă φ0), along
the three constraints: amount of inflation (N „ 60), right scale of density fluctuations
(δρ
ρ
„ 10´5) and a graceful exit and the formulae

δρ

ρ
„ 10´5

„
V

3
2

V 1
(4.14)

13periodic models such as V(φ) = Λ4(1´ cos φ
f
)

14I would rather classify this as hilltop inflation. When a model has a long plateau the IC for SR are
satisfied as the potential energy will dominate over the kinetic one for a very long time.
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and

Nmax „
8π
m2
p

ż φf

φi

V

V 1
dφ (4.15)

ISL conclude that there is a larger range of ∆φ for the powerlaw part of the po-
tential and also a bigger maximum number of e-folds. Thus, powerlaw inflation is
exponentially more likely. Nmax is given by „ 8πφ2

0
m2
p

for the plateau and Nmax „

8π
m2
p
max(φ2

i ´ φ
2
f). Comparing those and as the range for power law (PL) is much

bigger than for the plateau (P) potential (as I have previously calculated, in order for
inflation to occur- density perturbation constraint, the parameter has to be of order
λ „ 10´15) ∆PL ąą ∆P,

NmaxPL „
NmaxP
?
λ
ąą NmaxP (4.16)

On the other hand they explain that it is not possible to calculate any probabilities,
hence, they shouldn’t be able to compare the likelihood of different models (see also
next section on the measure problem). The authors agree that the plateau and pow-
erlaw inflation models lead to a multiverse in which normal counting or a definition
of probability due to infinite sample spaces isn’t possible. Their arguments are self-
contradictory. They don’t account the prior probability for the models themselves but
rather for the initial values and tuning of parameters. Moreover, this argument is only
valid for single field models and without other processes such as quantum tunneling.
The anthropic principle cannot be used as solution since it would also favour more
likely models which again is not a convincing argument.
They propose to have a plateau at large φ and no powerlaw behaviour such as R2 or
natural inflation15 where the form is periodic and power law is forbidden. However,
such a potential should be the only option which obviously isn’t the case. It simple
means least amount of parameters the R2 inflation should be classified as simple and
is consistent with Planck data. One should also investigate more what the fine-tuning
conditions are for plateau potentials as SR is automatically possible, but should have
the right behaviours for large field values (in Taylor expansion the potentials needs
certain cancellations).

4.4 Probability Problem

We have already encountered the probability problem in Lim’s treatment. In the first
place one might wonder what is the probability that inflation occurs? This was first
tackled by Gibbons, Hawking and Stewart (1986) who defined a measure on the FRW
models with scalar field inflation. The corresponding measures of two Cauchy slices
are the same and it is a natural choice (pull back of the symplectic form for this sys-
tem)16. They concluded that most of the models would produce inflation that solves

15Freese, ’Natural inflation with pseudo Nambu-Goldstone bosons’, 1990.
16Basically this was the first kind of volume measure: The universe is a 2nÑ 2n´1dim constrained

Hamiltonian system. An intersection of a hypersurface and a bundle of phase trajectories is 2n´2 dim.
By the symplectic form’s pull back a 2n´2 form, a volume form, is induced. This volume is completely
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the horizon and flatness problem. Unfortunately, the measures were infinite (Hawk-
ing and Page, 1987) for both the inflation and non-inflation results, same was shown
for R2 inflation later.
Another issue is the question how to define probabilities if we accept that there was
some kind of inflation era. Steinhardt [76] criticises that there have been improbable
conditions at the beginning of inflation (SR parameters) or would have caused eternal
inflation17 i.e. infinite universes with all kind of properties as the random quantum
fluctuations give rise to all kind of possibilities. Some of them might be with high
curvature or inhomogeneous. This leads to the impossibility of making predictions or
computation of probability which should be possible in all kind of physical theories.
Further, he claims that bad inflation is more probable than good one (not correspond-
ing to our observations) where the only solution might be the use of the anthropic
principle. Even worse, Penrose showed that it is more probable even when no infla-
tion occurs, just from simple thermodynamics, to have initial conditions that cause
flatness and homogeneity.
In my opinion, the probability problem in inflation also consists of the fact that in order
to calculate, say the probability for a potential, we first need to know the fundamental
degrees of freedom as well as the UV completion of the theory which we both don’t
know. A further investigation of inflation in quantum gravity setting is necessary.
Without the possibility of calculating probabilities the theory cannot give any predic-
tions and would basically be useless (this will be further explored in the AS chapter).

4.4.1 Measure Problem

For the multiverse arising from eternal inflation our sample space is infinite as an
eternally inflating universe produces an infinite number of pocket universes and so
on. In order to still calculate probabilities we might find a truncation to order. A
probability measure is needed - we have to assign a likelihood to each event in order
to measure how probable it is to live in our universe. To find a measurement it is
common to introduce a cutoff similar to a regularisation. Several options have been
proposed and disregarded giving different results. Hence, solutions depend on the
cutoff chosen which shouldn’t be the case.
In order to compare probabilities, we may write

pa

pb
=
Na

Nb
(4.17)

where the ratio of the probabilities of two events (or two properties such as different
temperatures at time of recombination) is equal to the ratio of the number of instances.
In a multiverse both are infinite, so it cannot be calculated in that form.
A favoured cutoff was the proper-time cutoff measure where events are collected only

independent of the choice of hypersurface. First, they used a cutoff in the Hubble parameter where the
ratio was indeed well-behaved and finite, HÑ∞. However, later Gibbons and Turok used a curvature
dependent cutoff, k

a2 again concluding that their results were independent of the cutoff chosen. The
result severely differ.

17Guth himself said that most inflation models would lead to eternal inflation and thus a multiverse.
However, he doesn’t give a proof or quantitative evidence.
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Figure 4.5: Youngness Paradox Two observations of CMB temperatures (red and blue).
The Youngness paradox says that Boltzmann babies dominate the counting. Most observations
made prior to t are made in bubbles that were formed recently. ’Boltzmann babies in the proper
time measure’, 2008.

until that time tc, so only a finite number of events happened. The probability is finite
if it is well-defined and one can remove the cutoff to infinity. However, the measure
doesn’t provide right solutions, it suffers from the Youngness paradox [4]. One needs
to account for the exponential volume change of Ve3H. The probability of being in
younger/hotter universes is here exponentially higher than our older/colder universe.
The difference is large [4], the ratio of our universe being at 3K to the actual CMB
temperature is

NTCMB=3K

NTCMB=2.725K
„ 101059

(4.18)

Similarly, compare our 13.7Gyr to a possible age of 13Gyr. If we assume that the
multiverse is dominated by the largest H˚, so inflation takes place in ∆t „ 1

H˚
and

ask how many universes are at least at the age and compare their probability by their
ratios.

„ e
3¨0.76Gyr
H˚´1 (4.19)

13 Gyr bubbles which is a rather large number. Hence, we need to somehow rescale.
Furthermore, models depending on time intervals/equal-time cutoffs in general suf-
fer from the fact that they depend on the definition of time itself (choice of the time
coordinate).
Along with this measure the volume measure was introduced which suffers from a
similar problem: a large volume causes more observers and is more likely. Often one
also encounters the Boltzmann brain problem that also would make our universe quite
unlikely and non-typical. Here the major part of observers would be Boltzmann brains
4.5 that are imprints of quantum fluctuations in the late stage. This is even the case
when one waits long enough for a stationary state. A pocket-weighted measure was
proposed to solve the Youngness problem.
Another choice is the stationary measure [6] embedded in the string landscape which

doesn’t suffer from the Youngness problem. It is counted from the beginning of the
stationary state not the beginning of the evolution. The authors start with an equa-
tion that encaptures the evolution of the volume distribution for the pocket universes
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numbered j = 1, ...,N that stay for different observations:

dVj

dt
= Vj(3H

β
j ´

ÿ

i

ΓjÑi) +
ÿ

i

ΓiÑjVj (4.20)

where β takes into account the different time coordinate choices and Γ is the tran-
sition proportional to the rate and local Hubble parameter. The transition is the
time derivative of the incoming flux of new pocket universes, d

dt
Qj(t) = ΓiÑj. We

look at the global structure with an asymptotic behaviour of the volume distribution,
Vj(t) „ V

(0)
j e3Hβmaxt which then gives a flux of

Qj(t) „
e3Hmaxt

3Hmax

ÿ

i

ΓiÑjV
(0)
i (4.21)

Now we want to calculate the probability of living in state j wrt to the number of
observations corresponding to that state Nj. The ratio is finite only when a station-
ary regime is reached which is at different times for different pocket universes, ∆ti.
Hence, local properties don’t depend on the time of origin, same as with the proba-
bility distribution, but get stationary at some time (stationary era), at least in some
models of inflation. To solve this issue the stationary measure resets the clock in every
vacuum. The different vacua (universes) are then compared at the same time from
where the stationary era begins. In order to find a cutoff a physical condition is needed
(beginning of stationary evolution/reheating...). To reset we need to cancel the factor
of e3Hβmax(∆j´∆i). Instead of calculating the usual limtÑ∞ Ni(t)

Nj(t)
the ratio of probabilities

is calculated as

Pi

Pj
= lim
tÑ∞

Ni(t+ ∆ti)

Nj(t+ ∆tj)
= lim
tÑ∞

Ni(t)

Nj(t)
e3Hmaxβ(∆ti´∆tj) (4.22)

This difference in time is basically the duration for SR.
A more recent measure is the reheating volume measure [90]. The spacetime dur-
ing inflation is rather empty, observers can only exist after reheating meaning it is
constrained by current experimental knowledge. The average number of observers
in a spatial domain of reheating is a function of the cosmological parameters in that
domain. Now one might say that each 3-volume produces an infinite 3-volume of
reheating in an eternally inflating universe and the reheating surface is rather inho-
mogeneous without any symmetries such that is not possible to mathematically define
a random point. We need a volume cutoff on the reheating surface that makes the
volume finite in a well-defined way. We are interested in the distribution p(Q|V)Vdq
whereQ|V needs to be regularised and q is a specific observable. The infinite reheat-
ing region is reduced to a finite subdomain, i.e. a finite volume, giving the probability
p(q) = limVÑ∞p(q|V). The problem is that this depends on the cutoff chosen. As
explained they use the reheating volume cutoff which defines the probability for a
cosmic parameter q as

p(q) = lim
vÑ∞p(q = qR,V) = lim

vÑ∞
ă Vqr|Vą

V
(4.23)
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since we want to have the portion Vqr of V where the parameter qr = q. The volume
of the corresponding parameter regularised via the reheating surface is

ă Vqr|V ą=

ş

p(V ,Vqr;q0,φ0)VqrdVqr
p(V;q0,φ0)

(4.24)

with the joint finite probability distribution produced by the reheating in the numer-
ator and φ0 and q0 are the values of the initial Hubble region. We get the probability
for a random q in the interval [qr,qr+dq]. It is claimed that the result is independent
of the initial values since the universes ’forgets’ them after self-reproduction. I quote
the main result, the ratio of two probabilities is

p(2)
p(1)

=„ e
3π2
?

2H2
0
(φ2´φ1)

2

(4.25)

with H0 =
b

8πGV0
3 which is gauge invariant and without spacetime coordinates. The

comparison is well defined since we deal with two different SR channels. The authors
follow a similar stochastic approach as in the SR case. They also only use the informa-
tion given by the intrinsic geometry of the reheating surface. When one has the finite
reheating volume V(R) with a certain probability one considers the joint finite distri-
bution of the reheating volume and portion Vq(R) of this volume where the property
is q = q(R), p(V ,Vq(R),φ0,q0). There is no Youngness problem. Comparing two
domains gives two different types of reheated domains (’two possible slow-roll chan-
nels’).
Other recent choices were Garriga’s immortal and imaginary ’watcher’ who can re-
markably take a random walk through the multiverse and count events, the frequen-
cies of events give the probabilities (Garriga, Vilenkin, 2013). The measure doesn’t
need a cutoff and is independent on initial conditions. However, it assumes that the
observer is on a timelike geodesic that undertakes infinitely many crunches through
spacetime and the vacuum landscape is irreducible18.
In contrast, Bousso (2007) developed a ’local’ measure where he only takes into ac-
count a finite patch of the multiverse (causal diamond as finite 4-V subset) as largest
region that is ever accessible for a single observer. The cut is given by the intersec-
tion of the future light cone from A and the past light cone of the point B where A
is the point where an imaginary observer crosses the reheating surface and B is the
point where the observer leaves that vacuum. This results in finite regions that are
large and rare with many observers and small and typical ones with few observers.
It follows the thought that all we can ever measure is indeed all there is such that a
measure problem in classical sense doesn’t exist.
Another perspective on the probability problem in inflation is the top-down cosmol-
ogy by Hawking and Hartle as explained in the last chapter and the appendix. One
shouldn’t ask about our origin or evolution in the sense of a single unique trajectory,
but make use of the universe that we observe along with the assumption that it arose
from nothing. Every history is possible and can be encoded in a quantum superposi-
tion integral with the boundary condition nothing to now. Their sum gives the most

18Meaning that every vacuum can be reached from any other. The counting of events takes place in
space and is a finite domain that is measured with the cross-section with the watcher’s geodesic
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probable, ideally our universe.
There is also the opinion that one should only use data from today’s observations for
future calculations of conditional probabilities i.e. predict the probabilities of future
measurements19.
In my opinion, one should not forget that the probability in cosmology has the same
origin as the quantum mechanical probability, indeed one might state that anything
that can happen will happen - but not with equal probability. Regarding the measures
one should use comoving coordinates, which are not expanding during inflation.
It seems as if the right measure is searched for in order to finally be able to give the
right probabilities, but the amount of (again) different models that all predict other
results and the rather ad hoc construction are not convincing.

4.4.2 Fokker-Planck treatment

Already in 1989, Nambu tried treating the stochastic evolution of the inflaton field with
the Fokker-Planck equation20. He calculated a probability distribution of a scalar field
for a certain physical volume and found a normalisable stationary solution. The uni-
verses are fractal-like distributed. The conditions for eternal inflation was also treated,
numerically and analytically solved and applied to different potentials21. Again, the
fluctuations are the sum of classical and quantum perturbation

δφ = ´
V 1

3H
δt+ δφq(δt) (4.27)

with a behaviour of δφq(δt) „ N (0, H
3δt

(2π)2 ). Once crossed the horizon the quantum
fluctuation becomes classical and be described by a Gaussian noise

3Hφ̇+ V 1 = N(t) (4.28)

The Fokker-Planck equation is then given for a set of fields i

˙P[Φ, t] =
1
2
H3

4π2
BiB

iP[Φ, t] +
1

3H
Bi(B

iVP[Φ, t]) (4.29)

which is valid at the stage of SR and needs an initial condition at t = t0. The Hubble
parameter is assumed to be constant, H2 = V08π

3m2
p

, and the potential is of the form

V(φ) = V0 +
řN
i=1 Vi(φi). The probability distribution takes the multivariate Gaus-

sian form P[Φ, t] =
řN
i=1 Pi[φi, t] (4.1),

Pi =
1

?
2πσi(t)

e
´

(φi´µi(t))
2

2σi(t)
2 (4.30)

19A. Linde, ’Sinks in the Landscape, Boltzmann Brains, and the Cosmological Constant Problem’
20This is a PDE for the temporal evolution of a probability density function where particles undergo

Brownian motion. If there is no diffusion term it simplifies to Liouville’s equation. For a probability
density P(x, t)

Ṗ(x, t) = ´
B

Bx
[P(x, t)µ(x, t)] +

B2

Bx2 [P(x, t)
σ2(Xt, t)

2
] (4.26)

where µ is the drift and σ the diffusion. satisfies the usual SDE such as dXt = µ(Xt, t)dt+ σ(Xt)dBt
with Xt as the stochastic process and B being the Wiener process. For more than one dimension the
formula sums over all particles.

21T. Rudelius, poster session during ’Quantum Spacetime and the Renormalization Group’, 10/20
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potential µ(t) σ2(t)

constant V0 0 H3

4π2 t

linear V0 ´ αφ
αt
3H

H3

4π2 t

free massive V0 +
1
2m

2φ2 0 3H4

8π2m2

(
1´ e´

2m2t
3H

)
Table 4.1: stochastic evolution of various potentials

The author analyses different single-field potentials 4.1.
For the Hubble duration t „ H´1 the constant and linear potential give the usual

Hubble size quantum fluctuation of H2π . The condition for eternal inflation is as usual
SR ε ă 1 which sets constraints on the parameters of the potential, but also the
expansion of the universe needs to be taken into account. The volume space that is
still inflating after a certain time, so for a certain value of the scalar field, is the product
of its probability (which is decreasing in time) and the increasing volume due to the
exponential expansion, V(t) = V0e

3Ht,

V(φ ą φc, t) = Prob(φ ą φc, t)V(t) (4.31)

Hence, we need a slower decrease of probability than increase in H.

4.5 Observations

As we have seen inflation provides an explanation for the cosmic perturbations and
quantum fluctuations as seeds for the LSS today.
It is clear that it is not possible to test inflation in the lab as we would need energies
near the Planck or at least GUT scale22. Hence, analysing the past and present of our
universe is the ideal (and maybe only) lab. As I have elaborated in the 3.5 part infla-
tion has been confirmed by observations to high accuracy. With the help of current
observations we can either test the theoretical status, identify problems and modify
the theory according to them and test again or we can predict future observations from
the theory only.
Interestingly, there were quite a lot of predictions that didn’t fit to the observations
and were disregarded, but should also be mentioned in order to quantify the success
of inflation models. For example, the amplitude of density perturbations induced by
quantum fluctuations in the CMB measured by COBE were smaller than predicted
or rather small parameters are needed (Ellis, Bruni, 1989). Additionally, the power
spectrum, for example, is not only dependent on the inflation model, but also other
assumptions such as dark matter, the density of atoms etc (where at least for the for-
mer we don’t know much about).
In the vast number of models one differs mainly by comparing the scalar spectral index
and tensor-to-scalar ratio (often in the so-called ns´ r plane). The model that fits the
observations best is the R2 (Starobinsky) inflation 4.6. The best model of inflation is
the one with a potential that fits the data and needs the least amount of fine-tuning.
The simple comparison of the spectral indices seems not very convincing.
The described E-modes are grad-like and created by scalar and tensor perturbations,

22Between GUT scale and the LHC accessible energies there are 12 orders of magnitude.
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Figure 4.6: Planck2018 vs different inflation models [20] in thens-r-plane. We should
clearly favour concave potentials. The best fit inside the data is the R2 model, mono-
mials such as φ2 are rather disfavoured, natural and powerlaw inflation are in the
intermediate regime and hilltop and R2 inflation is favoured. The SR parameters are
evaluated for 50 to 60 e-folds at the horizon crossing with reference scales as described
in 3.5. Planck’s TT, TE, EE+low E+lensing is added by BAO and BK15 experiments
(angular power spectrum, temperature polarization cross power spectrum, polarisa-
tion only, lensing induced & galaxy surveys & B modes, respectively).
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whereas the yet to be measured B-modes are curl-like and created by tensor perturba-
tions only. Hence, E-modes can be seen radial around cold spots (E ă 0) and tangent
around hot spots (E ą 0) [20].
As already mentioned the bouncing cosmology model would produce gravitational
waves as well, but with smaller amplitude. Whereas inflation predicts the scalar-to-
tensor ration of order r = 0.01, the bouncing model predicts r „ 10´5 which is rather
not detectable. B-modes haven’t been observed yet which favours the cyclic model,
but could rule it out in the future (ISL, 2014).
Another possible observation, but ruled out by inflation, is large scale rotation since
any pre-rotationary state should be reduced to near 0 by the exponential expansion.
They can also not form during inflation since they would be vector perturbations that
don’t arise in the cosmic perturbation theory (other than scalar (density) perturbations
and tensor perturbations (gravitational waves)) and the scalar field is irrotational.
Findings of large scale rotation in the CMB e.g. in some kind of shear anisotropies in
the CMB would rule out the theory (or ask for some modification).
Some papers also claim that former bubble collisions (as in false-vacuum eternal infla-
tion models) might have left imprints in the CMB (Aguirre et al., 2007 - detectable with
high probability, late-time observers should see a ’nearly-isotropic distribution of bub-
bles with tiny angular scales’). Based on that a joint collaboration of UCL and Imperial
[68][69] found out that bubble collisions would be detectable as small temperature
differences in azimuthal patches (projections onto the 2dim last scattering surface).
They created an algorithm to analyse these temperature fluctuation. 1. search for
areas with azimuthal symmetry23 2. search for edges with temperature steps24 3. find
the best parameters to reproduce those results where they basically created ’fake’ CMB
fluctuations that correspond to bubble collision imprints signals.
Eternal inflation should produce a probability distribution of five parameters (the col-
lision centre described by two angular values and the amplitude of the temperature
modulation there plus value of the causal boundary and its temperature discontinuity)
that describe the collision and the number of events. After evaluating the results they
used the algorithm for the WMAP 7-year data. In the end, they found several possible
regions, four that are larger than expected from false measurements, including the
’cold spot’25. However, they found a rather small probability for any circular temper-
ature discontinuities and also didn’t find any the WMAP data. If it were detected it
would be a a clear evidence for eternal inflation and the multiverse.
What if other theories predict the same results that we can observe as inflation? For
example, inflation predicts nearly scale-invariant density perturbations that has been
confirmed by cosmic observations. Other conditions can produce such a a spectrum
as well (e.g. Geshnizjani et a. 2011). In an expanding universe with a variable speed
of sound only one of the following conditions need to be the case ’1. accelerating
expansion (inflation), 2. a speed of sound faster than the speed of light, 3. super-

23due to the SO(2, 1) spacetime symmetry during the collision of two bubbles arising from the hy-
perbolic SO(3, 1) symmetry of the single bubbles (rotations + boosts) - symmetry around a straight
line, rotations + boosts transverse to the collision axis only.

24The imprint can only be in the future lightcone of the possible collision which is a ring in the
CMB, this boundary needs to be smoothly connected to the outer region. The signal is stretched due to
inflation.

25The cold spot is a rather large region in the CMB map that is colder than the predicted anisotropies.
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Planckian energy density’. I will briefly describe the second case. Modes freeze out
when crossing the horizon, λ „ |y| where dy = csdη (as before in the BD vacuum
with q2

q
„ 2
y2 ). For the horizon crossing we know that λi ě 1000λf and a superhori-

zon exists for λf(ηf) ą r(ηf) where r is the Hubble horizon. No other assumptions
are made. Those conditions can be rewritten as |yi| ě 1000|yf| and |yf| ą r(ηf), i.e.
yf´yi ą 1000r(ηf). The continuity equation can be rewritten as ρ̇

ρ
= ´2εH. Hence,

integrating after tÑ η, HdtÑ dη
r(η)

gives

ln
ρi

ρf
= 2

ż tf

ti

ε

r(η)
dη ą

2
r(ηf)

ż ηf

ηi

εdη ą
2

r(ηf)
εmin(ηf ´ ηi) (4.32)

Thus, without the assumption of any accelerating expansion (hence the second last
steps). We also know

yf ´ yi =

ż ηf

ηi

csdη =ă cs ą (ηf ´ ηi) (4.33)

Therefore, for εmin ą 1, we conclude
2000
ă cs ą

ă ln
ρi

ρf
(4.34)

and assuming the initial density of Planck size, m4
p, and the final at horizon crossing,

(100MeV)4 (sub-Planckian), the average speed of sound is above 10.
Also Magueijo’s VSL theory predicts such a spectrum.
Following Feynman (1964) the scientific method is a process of thought based on
integrating previous knowledge, measurements and observations as well as logical
reasoning. In the next chapter of this thesis I will investigate this in the asymptotic
safety setting.
Interestingly, it has also been claimed that we cannot classify the nature of fluctua-
tions, whether classical or quantum, by observations. Two point correlations are also
classically produced by density perturbations and classical randomness. Three-point,
n-point correlation functions, however, differ in the classical and quantum scenario
such that it has been suggested to look for observational evidence, currently being
done by ESA’s Euclid satellite (Green & Porto (2020)). This follows the proposed pri-
mordial non-Gaussianity. We have seen that as long as the potential is sufficiently
flat the step size in the random walk of Hubble sized regions is Gaussian and so are
the quantum fluctuations predicted to be Gaussian. However, more models, espe-
cially ones in the String Theory sector and the ones that describe inflation at lower
energies, predict non-Gaussianity but also simple models e.g. by isocurvature fluctua-
tions (Langlois,2012) or non-linearity in the dynamics (Dunik, 2013). Measurements
haven’t been sufficiently sensitive until now.

4.6 Falsifiable?

Guth himself claimed that inflation ’is too flexible to be falsifiable’26 (Feb 2014) due
to the large amount of models inflation has produced.

26But he also added that ’there are many different models, just as there are many different gauge
theories that we won’t be able to test’
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Firstly, one may wonder whether inflation is the only theory (if one agrees to that
term) that explains the problems described in the motivational part earlier.
Penrose differs between internal and external problems of cosmology. Former are for
example the monopoles, they are self-made as they depend on a theory. It might
equally be true that our theory of GUT and symmetry breaking is wrong (although
this is very unlikely as it has been very successful in testings of the SM). The flatness
and horizon problem are external since they are directly correlated to the observable
universe. Despite major efforts in the past years it might still be the case that our
observations are non-typical.
The solution of the monopole problem is not necessarily a success in favour of in-
flation, the absence of monopoles might still be disproven and if so it would be an
evidence against GUTs. If our theories are wrong, we wouldn’t predict any monopoles
in the early universe and then there is no need for inflation (at least for this problem).
One would need to show that GUTS are definitely true and that there is no other way
to dilute the monopoles. As described previously, if one follows symmetry breaking of
the GUT, monopoles would have formed during that phase transition. A lower bound
on the number of monopoles can be found by causality, n „ ζ´3. In most models
inflation takes place below the GUT scale, such that they could only be produced prior
inflation.
However, there exist also other theories how and when those monopoles were cre-
ated which then changes the further dynamics. [60] investigated the production via
thermal fluctuations of the gauge fields in the early universe. The Kibble mechanism
(see 7.7.3) can only be applied to a global symmetry that is broken27 and cannot be
used as an explanation. Both, the number density and the spatial distribution of the
monopoles differ. They also arise as freeze-out of long wavelength dof, but with a pos-
itive correlation length at small scales (whereas Kibble’s mechanism predicts negative
ζ, a calculation can be found in the appendix 7.7.3). At the transition point (which
is rather a smooth region) the correlation length doesn’t diverge. There have been
claims that in spin ices effective quasiparticle excitations with magnetic charge with
similar properties to magnetic monopoles were found28.
When we want to test inflation the question is whether one can test the entire (infla-
tion) scenario or only specific models or how much we test is model-independent.
Another problem is that inflation can also predict other outcomes that we might test
one day or were predicted before observations and then obviously disregarded. Some
are in order, all carefully checked and validated. Linde showed that any value of Ω is
possible (1998), the power spectrum could be different from the one depicted in the
last chapter with, for example, ns being not scale invariant (Salopek, Bond & Bardeen,
1989) or non-Gaussian and not adiabatic perturbations (Demozzi, Linde & Mukhanov,
2011). Further, Steinhardt (1990) argued that any value above Ω ě 0.5 is possible
while still solving the horizon problem. However, Hu, Turner and Weinberg (1994)
claim that as long as inflation is constructed to solve the horizon problem Ω is auto-
matically near 1. This makes inflation less convincing. Bucher, Goldhaber and Turok

27Elitzur’s theorem (1975) says that local gauge symmetries cannot be spontaneously broken. Note
one can still have a local gauge symmetry within the global symmetry that undergoes SSB.

28Castelnovo, Moessner & Sondhi, 2008, ’Magnetic monopoles in spin ice’

83



(1995)29 proved that inflation is the only way to produce an open and homogeneous
universe. However, our observations don’t indicate that we live in an open universe.
The list goes on.
If one defines falsifiable not according to Popper, but simply along other physical theo-
ries, whether it predicts the right properties we observe, we can argue: Certain models
can be disapproved, but it is difficult to falsify the class of inflation models where ba-
sically new models can be added with the right properties. It would be interesting to
investigate whether it is possible to always find some model that produces any given
list of properties. The observations so far have given sufficient evidence for specific
models. Following Popper, however, a theory that is not falsifiable cannot be scientific.
Hence, if we won’t ever be able to test/observe the multiverse, inflation shouldn’t be
called a theory or eternal inflation and the multiverse is a mere prediction of the in-
flationary theory.
The testability of a theory actually doesn’t need predictions that are independent of
the parameter choice as ISL claim. As already mentioned, the SM in particle physics
contains many parameters and has been very well confirmed in the past years. If a
theory gives falsifiable predictions this doesn’t imply that it is a scientific theory. In
fact, if a theory can be expanded to give predictions that are needed one can debate
whether this is still a scientific theory. Many models had to be abandoned because
of the data not fitting the observations. Usually, one has the same models with say
different parameters that need to be ’tuned’ according to the experiments. However,
falsifiability is a necessary (but not sufficient) requirement.
Still, one can conclude that inflation solves many problems all at once. In my opin-
ion, inflation was constructed to solve the cosmological problems at first, then further
predictions such as perturbations arose (or were rediscovered) which was tested later
or is still being tested. Barrow and Liddle (1997) distinguish between inflation as
theory of initial conditions and as a theory of the origin of structure. Latter has been
well confirmed (especially in the power spectrum) whereas the first highly depends
on the models or models could be added to describe today’s observations of the early
universe (such as the observation of a possible open universe) and the fact that one
indeed classifies the cosmological problems as problems.

4.7 Need for Quantum Gravity

Matter is described in terms of quantum fields, in modern QFT in flat spacetime. Infla-
tion needs a non-vanishing potential. This already gives the need for the cosmological
theory of inflation that takes place in classical GR FRW to embed it in some theory
of quantum gravity. Moreover, in the early universe matter was highly compressed
and hot (Ñ QFT) and the curvature was very large (cosmology). For φ ą mp cor-
rections need to be accounted for30, such as the gravitational interactions between
vacuum fluctuations. As we have seen quantum fluctuations have been stretched to

29An epoch of old inflation (false vacuum) is followed by a new inflation model (SR). First the horizon
problem is solved, then k ă 0 universe arises by bubble nucleation that drives Ω Ñ 0 and along its
evolution increases again, but stays (well) below unity.

30For energy densities above m4
p quantum gravity effects dominate as quantum fluctuations of the

metric dominate over the classical metric values.
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today’s LSS. One may expect that inflation comes from a theory of quantum gravity
or modification of general relativity, a UV completion of quantum corrections of the
Einstein-Hilbert theory at high energies.
Quantum gravity approaches predict other forms of inflation, substitute or extend in-
flation. Thus, it is important to compare the results that arise in different approaches.
LQG [67] (see also 3.6.3), as already mentioned, predicts a big bounce. φ functions
as clock and gives a probability amplitude for various spacetime geometries (there
is no preferred time coordinate, ’emergent time’). First one chooses a classical tra-
jectory with a constant of motion P(φ) = P˚(Φ) and a point (ν˚,φ˚). GR FRW is
valid on any dynamical trajectory where the spacetime curvature and density are suf-
ficiently low (at late times). Now construct a wave packet at the internal timeφ = φ˚,
µ = µ˚,P(φ) = P˚(φ) and evolve this backwards. Investigate whether the wave re-
mains peaked at the classical trajectory or whether quantum effects start to dominate.
A UV completion at high curvature is aimed for, the evolution is dominated by the
Hamiltonian in LQC.
Near the Planck scale quantum effects produce an effective repulsive force that is
greater than the classical gravitational attraction, the contracting universe bounces
and a new ’Big Bang’ happens. To explain the contraction from the expansion phase,
Friedmann’s equation is slightly changed for small a(t) (without cosmological con-
stant): (

ȧ

a

)2

=
8πGρ

3

(
1´

ρ

ρc

)
ρc =

?
3

32π2γ3G2 h
(4.35)

where ρc is the critical density which depends on the Barbero-Immirzi parameter31

γ. The critical density is then about 0.4 of the Planckian density (in numerical sim-
ulations of the order of the matter density). The RHS can become negative which
corresponds to a contracting universe. The singularity problem is resolved (see also
Ashtekar, 2009) and the initial conditions for inflation (in the standard SR sense)
are met during the contraction and bounce back. This bounce back arises out of the
quantum properties of the gravitational field itself. SR takes place after the so-called
super-inflation. For large a(t) the evolution coincides with the classical description.
It also predicts gravitational waves (B-modes), but more suppressed than standard
inflation theory predicts (Bojowald, 2008). Similar predictions are made by ISL and
Penrose, but of different nature as we have seen.

GR is a deterministic theory that describes the smooth and dynamical spacetime
based on the Riemannian metric. Standard quantum mechanics is set in a fixed, non-
dynamical spacetime with an external time variable governed by probability rules. On
small scales objects become quantised. How can we implement quantum properties
into spacetime? Conventional quantum field theory gives the physical content via n-
point functions. Perturbative QFT uses regularisation and renormalisation methods.
In gravity the usual renormalisation procedure doesn’t work and the gravitational field
which is spacetime should become a quantum operator. On the approaches for a quan-
tisation of gravity I made a brief summary in 7.12 and this will also be discussed in
the following chapter. It will deal with the asymptotic safety approach (AS) and the

31This parameter can be fixed (!) via the semi-classical black hole entropy, γ „ 0.24. Its origin is not
known and until now the only free parameter in LQG.
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renormalisation group flow technique and how it might help to solve the problems
that the theory of inflation faces.

It is beyond the scope of this thesis to analyse the need for quantum gravity. It
is obvious that in the quest to a physically and mathematically consistent theory of
inflation it is absolutely necessary to further look for a theory of quantum gravity.
Quantum cosmology might give us a theory of initial conditions. We should also in-
vestigate how to treat the beginning of inflation. For example, we have seen that we
usually treat the background classically and ’add’ quantum fluctuations. However, it is
not clear how to couple the classical dof to the quantum dof and this treatment should
only be seen as an approximation. If Inflation started from such a small Hubble patch,
surely we should treat the system quantum mechanically only. 3.6.2 calculation has
also shown that we might need to go beyond standard cosmology methods. It would
be interesting to analyse their result in the presence of complexified SR potentials.
The small digression also showed us that it isn’t a priori clear that the universe would
transform from some quantum to a classical object. We have also encountered one of
the issues in QG approaches whether to treat the gravitational path integral Euclidean
or Lorentzian. We have seen that the Wick rotation in the no-boundary proposal by
H&H is problematic in GR. They rotate the time coordinate and the kinetic term has
then the ’wrong’ sign (this is the so-called conformal factor problem).
Why quantum gravity32/quantum cosmology+ (application of QG to the universe) in
brief:

1. classical and quantum concepts seem to rule out each other

2. QFTs usually treated on fixed, non-dynamically background - in GR we have a
dynamical curved spacetime which is the gravitational field itself

3. how to transition from quantum to classical?

4. lack of prediction beyond the Planck scale i.e. very high energies, large curva-
ture, small distances

5. cosmological issues such as black holes and the Big Bang (curvature and space-
time singularities) are not explained by GR

6. the SM of particle physics has some intrinsic energy scale above which our QFTs
aren’t defined anymore

7. hierarchy problems (cosmological coincidence, gauge hierarchy)

8. the SM misses to include GR

9. fine-tuning problems (Λ, αS, mHiggs..., spacetime dimension?)

32One might also take the following Gedankenexperiment: Imagine you want to analyse a quantum
box localised at a point. You will need to go to smaller and smaller scales, increasing the momentum
uncertainty according to HUP which increases the energy i.e. mass of the box, so much that an event
horizon will form with r „ m as we know from GR. Where did the box go?
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10. we are faced with nonphysical divergences in both GR and QFTs (Landau poles...)
and naive attempts of the quantisation of gravity

11. unification of all interactions and physical and mathematical theories (4.7)

12. explanation for ’fine-tuned’ parameters in the universe

13. how why did space and time arise? (Does there exist a minimum length, is space-
time fundamentally discrete? Is causality an emergent phenomenon? ’Problem
of time’...)

14. absence of a fixed background, background independence

15. what where the initial conditions of our universe?

16. to keep theoretical physicists busy.

17. interpretation of QM

18. ...

The list goes on.
It would be a very satisfying result if inflation is purely a quantum gravitational effect.

Figure 4.7: Sketchy Unification of Theories
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Chapter 5

Asymptotic Safety and Inflation

Scientific theories cannot be deduced by purely mathematical reasoning.

(S. Weinberg — To Explain the World)

5.1 Asymptotic Safety and Renormalisation Group

Asymptotic safety1 is a conjecture equipped with a consistent mathematical framework
in which a QFT might be well-defined at all energies owing to an ultraviolet fixed point,
and without the necessity of being perturbatively renormalisable. Its idea, originally
brought up by S. Weinberg [85], is based on the assumption that classical GR might
be the effective theory (= a theory at low energies, defined up to a certain scale ??)
of a consistent QFT at all energies. For this to occur, the necessary ingredients are a
fixed point of the renormalisation group.2

The coarse-graining can be pictured with the help of the block spin renormalisation
group by Kadanoff. Imagine a lattice of 2d with spin up or down at each point that only
interact with their neighbours. He used invariance properties of critical points in sta-
tistical physics and asked the key question how the system’s description might change
if one replaces a block of spins by a single spin (by simple averaging). This comes along
with a change of length scale i.e. a decrease of the number of degrees of freedom (new
couplings) which is for atomic/molecular behaviour analyses favourable. By coarse-
graining, averaging and rescaling he was able to show that new effective values can
form that describe the systems just as good as the old ones (later, this will correspond
to the fixed point since in this case the corresponding theory will always be mapped to
itself). Importantly, the rescaling of the whole system is such that the original lattice
size is reached. The so-called block spin transformation makes it possible that we lose

1The first subchapter was also used in an exposé of my application for a scholarship (Deutsche
Studienstiftung). Some ideas of [59] are used in the following chapter.

2Weinberg (1979) first introduced the term AS in ’Ultraviolet divergences in quantum theories of
gravitation’ in ’General Relativity: An Einstein centenary survey’ with the definition of a theory class
with a well defined and predictive UV behaviour. As 2 + ε gravity seems to be asymptotically safe he
wondered whether gravity can be made so as well. In order for this to occur, a UV FP has to exist with
a finite number of UV attractive directions (=relevant critical exponents).
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the notion of a reference scale, it looks the same no matter the resolution.3 While in
statistical physics we often have some initial condition and ’flow on’ trajectories, here
we start in the UV and flow along the trajectory towards the IR regime. We will see
that the macroscopic physics (large distances) can be described by the knowledge of
the fundamental interactions in the microscopic regime. The Wilsonian way is similar
(with the analogue statistical physics Ñ field theory, lattice spacing Ñ cutoff, ther-
mal/statistical fluctuations Ñ quantum fluctuations). In 1971, Wilson combined the
works of Kadanoff’s block spin and Gell-Mann et al. RG treatment of β-functions.4

The starting point is the Euclidean path integral and an adjustable momentum scale
k.

Zk(J) =

ż

p2ąk2
Dφe´S(φ)+Jφ (5.2)

where S is the bare or classical action, J is the corresponding current/source of the
field φ, and the integration runs over all quantum fields φ with momenta larger than
k. Importantly, the Euclidean signature makes it possible to define the direction of
the RG flow. It is assumed, but not proven that the Euclidean FP goes over to the
Lorentzian setting. Sending kÑ 0 leads to the full physical theory. The modern way
of introducing the cutoff in practice is by writing 5.2 as

Zk(J) =

ż

Dφe´S(φ)´∆Sk(φ)+Jφ (5.3)

where the term ∆Sk(φ)9φ ¨Rk ¨φ
5 with suitable requirements for the cutoff function

Rk(p
2) (that suppresses the fluctuations of fields below the momentum scale k i.e. it is

an IR (!) regulator) implements the Wilsonian coarse graining 6. The effective average
action (EAA) action Γk(φ) arises from Zk(J) via a suitable Legendre transform. The
variation of Zk or Γk with the RG scale k describes the integrating-out of quantum
fluctuations.
Taking the kBk derivative of the EAA – which is equivalent to an infinitesimal variation

3The partition function is given by the same Z = Trd e´H = Trd1 e´H
1

,H = H
kBT

for both spacings
d,d 1 which are related by the projection P s.t.

ř

d1 P = 1. We average over the spins in one block and
under block spin transformation we project he critical point in the theory space onto itself cÑ c 1 (’RG
transformation’ r). The critical point is then given by

c˚ = r(c˚), c 1 = r(c), c 1 „ r(c˚) + (c´ c˚)r
1(c˚) + ... = c˚ + d´θ(c´ c˚), θ =

ln r 1(c˚)
lnd

(5.1)

which we will see is the critical exponent that gives the stability properties of the FP.
4’Renormalization Group and Critical Phenomena. II. Phase-Space Cell Analysis of Critical Behavior’,

Wilson solves the critical behaviour for a generic Ising model by integrating out wave packets with
momentum of greater than unity. He formulates the average action in the continuous space instead of
Kadanoff’s lattice approach.

5The cutoff is quadratic in the fields to get a 1-loop exact equation, see 5.4
6Rk(p

2) takes finite values for small momenta. For p
2

k2 ! 1, Rk Ñ 1 and exponentially decay for
p2

k2 " 1. Similarly, for BtRk that takes finite values for ! p2

k2 , peaks at order of unity and vanishes for

"
p2

k2 .
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of k – one finds an exact functional flow equation for Γk,

BtΓk =
1
2

STr
(
δ2Γk

δφδφ
+ Rk

)´1

BtRk
7 (5.4)

which is the starting point of many calculations and was derived by Wetterich in
1991[?]. It is exact, there is no need for assumptions on convergence. We also had
to safely remove the UV cutoff (ΛÑ∞), where the trace is well-defined, to arrive at
an expression that is dependent only on k. The EAA connects any given initial action
with the full quantum effective action. The importance of this equation will become
clearer later.8

The supertrace sums over all momenta of all fields φ, all particles and particle types,
spacetime and internal indices (with an extra minus sign for fermions, a multiple of
2 for complex fields). Sending k from large values in the UV to k Ñ 0 in the IR, the
flow equation interpolates between the bare microscopic theory with the action S and
the full quantum effective action Γ . The effective action can be expanded in ’theory
space’ as

Γk(φa,gi) =
ÿ

i

gi(k)Oi(φa) (5.5)

where φa are various fields, Oi denote interaction terms and gi the corresponding
scale-dependent couplings. Basically, the basis of the theory space are the operators
and the couplings are the coordinates. Given the exact RG flow of the functional (5.4),
the exact beta functions for all couplings in the effective action (7.154) can be calcu-
lated. Although this flow equation is exact, in practice, it cannot always be solved
exactly. Therefore, the functional differential equation must be ‘truncated’, meaning
it has to be projected onto a small patch of the theory space. Most importantly, all
orders are well described by equation 5.4, the resulting flow equations give the exact
renormalisation group equations (ERGE), for its derivation see 7.13.2.

Γ0−−−−−−−−−−−−−−−−Ñ
kÑ0 ordinary effective action

Γk−−−−−−−−−−Ñ
effective action at k

S−−−−−−−−−−−Ñ
bare action, kÑ∞

The flow equation covers usual perturbation theory, but the advantage of RG flow
methods is it to go beyond to answer questions that cannot be answered with pertur-
bative methods.
For the theories of the standard model, it is a straightforward calculation as its cou-
plings are dimensionless, for QED we can measure the electric charge and we are done.
QCD is well-known asymptotically free [85] [89] meaning that the strong interaction
of quarks becomes weaker at high energies and allows perturbative treatment, but at
low energies it is strongly coupled (confinement). In general non-Abelian gauge fields
(+fermions and scalars under certain conditions) are asymptotically free.
However, gravity is quite different from those theories since its coupling, the gravi-
tational Newton constant G has a canonical mass dimension of ´2, hence, goes like
Gk´2. If the canonical mass dimension satisfies [gi] ě 0 it is a renormalisable coupling

7This is sometimes also shown as circle (full propagator)+
Â

(derivative of the cutoff)
8Wetterich’s derivation include both real space and momentum space. In FRG one usually calculates

in momentum space.
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constant, if it is ă 0 it is non-renormalisable (UV divergent). A field theory is pertur-
batively renormalisable if no coupling constant possesses a negative mass dimension
(and if all boson propagators 1

p2 behave like fermion propagators 1
p

) such as QCD,
QED, φ4 in 4d: gs, the electric charge e and λ, respectively, are dimensionless. In
the renormalisation group flow the constants have to be taken on the run, G(k). For
an asymptotically safe theory, it is assumed that an interacting UV fixed point exists,
denoted NGFP (non-Gaussian fixed point meaning g˚ is finite and nonzero). In QCD
a Gaussian fixed point (GFP) is found, so g˚ = 0, the Gaussian critical exponent is
the canonical mass dimension, perturbation theory applies (non-negative dimension).
Hence, if the theory fails to be asymptotically free, we generalise this method and look
for the mentioned NGFP. Here, the fixed point is finite, but the beta functions for all
couplings vanish at that point Btgi = 0.
The construction of the theory space and thus of the dimensionless couplings is needed.

gi(k) = k
´diGi(k) (5.6)

where di is the mass dimension of the dimensionful coupling Gi. At every point in
the coordinate system there is a possible operator Oi, equation 7.154, the couplings
represent the possible directions and have a certain value at this point.

Figure 5.1: The β-function for asymptotic
freedom (AF) such as YM and asymptotic
safet (AS). The UV attractive FP is non-zero
for the latter. The arrows indicate flow to
the IR.

The set of these axes is the theory space.
A trajectory is a line in the theory space
that corresponds to all information of ex-
actly this realisation of the theory for all
couplings at all scales. Then, it is pos-
sible to measure the system at a scale
k and make predictions for other scales
(one might imagine that at scale k we use
a microscope with a resolution of 1

k
). If

we then assume that the cutoff k can be
safely removed and taken to infinity and
the trajectory ends at a NGFP, the theory
is asymptotically safe (hence its name).
Most importantly, the high momentum
regime of the theory is scale-invariant, it
looks the same for all resolutions.
A renormalisable quantum field theory
can be defined and analysed at the fixed
point. The UV fixed point should have a
finite number of UV attractive directions
as those correspond to the free parame-
ters that have to be fixed by experiment
(i.e. we look for a critical manifold of fi-
nite dimensionality). Obviously, the less the more predictive the theory. The set of
points that flow to the fixed point is called UV critical surface.
The theory space is infinite, different truncations (ansätze) have to be made to or-
ganise the couplings and operators, it must be summed over a certain topology and
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dimension.
For gravity, diffeomorphism invariance (a 1-1 map that moves a point in a manifoldM
to a new one and fulfils the notion of topological proximity; when a metric is intro-
duced gravity has to be diffeomorphism invariant as we should be able to freely move
points around the manifold9 is the necessary condition with the metric as dynamical
field. In GR the notion of active diffeomorphism is important, we cannot distinguish
between fields that are related by diffeomorphism as we can always find a coordinate
transformation in new coordinates. The second step is the implementation of gauge
invariance (redundancy in the system). The background field method, where the met-
ric is split into a background metric and fluctuations is commonly used.
Around the fixed point the linearised flow equation gives insight about its stability.
Until now the Einstein-Hilbert action was the focus of many studies (a good summary

can be found in [72]). Usually, background field methods are applied, where the met-
ric is split into a background and quantum fluctuation part [64] [36]. In the beginning,
fixed points were found with the help of dimensional continuation for d = 2+ ε [22]
[17] (the critical dimension for Einstein gravity is d = 2 since then Newton’s constant
is dimensionless). It has recently been explained that a resummed ε-expansion re-
mains valid up to ε = 2 (meaning d = 4) [21]. First indication for a UV fixed point
in four and higher dimensions [64], via large N approximation[74], lattice methods
[46], in higher dimensions [42], including matter [55], with the help of ERGE [64]
[72] [41] and from a perturbative perspective [52] and recent fourth order studies
[35]. The RG methods have been applied to a large class of theories including models
that are perturbatively non-renormalisable, but were proven to be renormalisable at
a nontrivial FP (e.g. Gross-Neveu model, 1985).
Nowadays, renormalisation group flow via exact renormalisation group equations and
further optimisation methods are used, but other approaches should be recalled as
well.
Applications to cosmology have also been investigated, including early cosmological
conditions and inflation which I am be interested in here. All of the studies found
remarkable stable fixed points, many of them are only weakly dependent on the gauge
fixing. Fixed points have been found with a finite number of UV attractive eigenvec-
tors (i.e. negative eigenvalues of the stability matrix), namely three.
Summarised, with the help of asymptotic safety we reduce an infinite number of con-
straints on couplings to a finite number of parameters that can be measured and
predict the theory for all scales without the appearance of any nonphysical diver-
gences. In contrast to other effective field theories, asymptotic safety gives extraor-
dinary predictivity due to the extra conditions of the existence of a fixed point in a

9One distinguishes between active and passive diffeomorphism φ. Former is an invertible map on
a d-dim manifold, M Ñ M, for say a scalar field A, A : M Ñ R, a new scalar field Â(p) = A(φ(p))
exists. This definition doesn’t include dependence on coordinates. The function a = A ˝ x´1 : Rd Ñ
R is defined by a(x) = A(p(x)) where x is the coordinate system. A passive diffeomorphism is an
invertible, differentiable map φ : Rd Ñ Rd that defines a new coordinate system x̂ on M, x(p) =

φ( ˆx(p) where the function satisfies â(x̂) = a(φ(x̂)). Taking the metric as an example, d(x,y) an active
diffeomorphism produces a new metric, d̂(x,y) = d(φ´1(x),φ´1(y)) - the metric forms are distinct,
but isometric. The diffeomorphism acts on the space of metrics, for example, gµν, eiµ the Riemmanian
and tetrad formalism. A passive diffeomorphism, however, acts on the space of functions, such as
gµν(x).
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UV critical hyper surface of a well-defined RG. Einstein’s theory has merely been the
starting point for a more fundamental theory. Whilst the dimensionless couplings ap-
proach finite values, the dimensional constant, here Newton’s constant, vanishes at
high energies. It shows an anti-screening effect. An extensive review that I have
used in the previous explanations can be found by Niedermaier and Reuter [65].
Asymptotic Safety

1. Assume that a suitable fixed point in the UV regime exits i.e. a continuum limit
can be taken and it is safe from divergences.

2. The construction must give sufficient predictive strength.

3. The UV critical hyper surface develops to a regime where classical gravity is the
IR approximation.

Asymptotic Freedom Asymptotic Safety
GFP g‹ = 0 NGFP g‹ ‰ 0

non-interacting interacting
e.g. QCD e.g. gravity

canonical power counting non-canonical power counting

5.2 Renormalisation

When calculating the two point correlation functions of interacting quantum fields10

xΩ| Tφ̂(x)φ̂(y) |Ωy (5.7)

To evaluate vevs for time ordered products one uses Wick’s theorem which related it
to the normal ordered product.

T(φ1,φ2...φn) = N(φ1,φ2...φn) + all possible contractions (5.8)

The vevs are then all terms that are completely contracted

ă φ1,φ2...φn ą=
ÿ

all full contractions (5.9)

Those contractions are given by the Feynman propagator DF(x ´ y) For DF(0) =
ş

dp4

(2π)4
´i

p2+m2´iε
corresponding to x´x, so loops, we get UV divergences. Whereas the

first divergence (for large momenta) can be cured by introducing a vacuum difference,
the second part needs further treatment. The trick is to use a resummation and to shift
the mass term. The mass in the Lagrangian is infinite, measurements makes it finite.
As we have elaborated this in detail in QED, briefly a sketch of explanation for, say
λφ4.

DF +DFDF(0)DF + ... = DF(1 +DF(0) + ... + (DF(0)DF)n) = DF
1

1´DF(0)DF

=
1

p2 +m2 ´DF(0)

10Importantly, Ω is the vacuum in the interacting theory and not the same as the free x0| state.
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where we can see the shift m2 Ñ m2 ´ DF(0). Similarly, along to the mass in all
theories the coupling and the wavefunction need to be renormalised.
The main problem in gravity is that the natural unit of Newton’s constant [G] isM´2 =
L2, it is a dimensionful coupling constant and even worse a negative mass dimension.
It is important to emphasise Einstein’s field equations with G:

Rµν ´
1
2
gµνR =

8π
G
Tµν (5.10)

One could start with a perturbative treatment.

gµν = ηµν + hµν (5.11)

Minkowski’s flat metric plus some fluctuations, |hµν| ăă 1. The Einstein-Hilbert ac-
tion should be dimensionless, in four spacetime dimensions constraints the Lagrangian
density to [M]4. The Ricci scalar as second derivative, „ δµδνgαβ, has units of [M]2

and
?
´gRÑ (δh)2 + (δh)2h+ ... (5.12)

in the action which shows that [h] = L´1. In order to account for the dimensions I set
h = ĥ

?
G. The action becomes11

S =
1

16πG

ż

d4x
?
´gR Ñ S =

1
16π

ż

d4x((δĥ)2 +
?
G(δĥ)2ĥ+ ...) (5.13)

the first part is the free part (2 degrees of freedom - gravitons) and the second part is
the interaction with the coupling constant

?
G with a dimension of length. Increasing

to more orders in a perturbative treatment we will then need more factors of momenta
in the numerator to keep everything dimensionless. The theory is perturbatively non-
renormalisable. It follows that the theory lacks of predictive power.
For a brief overview about the quantisation approaches of gravity see ??. (a) The met-
ric split into fixed background and fluctuations, gµν = ηµν+hµν with the Minkowksi
metric as 0th order approximation is limited by perturbation theory. (b) The Feyn-
man quantisation of GR was motivated by the fact that spacetime is the gravitational
field (other than, for example, the EM field which is embedded in spacetime). Physi-
cal events are individual spacetime points. The sum over all histories h between two
hypersurfaces σ1,σ2 with boundary values f1, f2,

(f2,σ2|σ|f1,σ1) =
1
N

ÿ

h

Ohe
iSh (5.14)

where N „ σ1σ2 should make the expression unitary. Due to gauge invariance, how-
ever, infinitely many histories are equal to the same physical situation.
Stelle showed in 1977 quadratic terms in the curvature action can renormalise the
theory. Unfortunately, the theory would suffer from ghost terms that make it unphys-
ical. From perturbation theory the theory is non-unitary. In fact, it can be restored by
infinite many higher derivative operators, but then one would lose again predictivity
(Weinberg, Gomis 1996).

11For future treatment: Γ „ Bh,Rµναβ,Rµν,R „ (B2h, BhBh)
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Donoghue treated GR as low effective theory, still leaving the high-energy behaviour
untreated. He claimed that the action of a theory of quantum gravity should include
all possible interactions that are consistent with the symmetries of the theory at low
energies (thus, general covariance and local Lorentz invariance12).
To be precise,

1. general covariance also called diffeomorphism covariance, GR is invariant un-
der active diffeomorphism (see before), meaning under arbitrary, differentiable
coordinate transformations.

2. Lorentz invariance (Lorentz covariance for scalar) as property of the given space-
time manifold, if a term/equation is valid in one inertial frame, it is valid in
another inertial frame. Locally, GR is described by SR. Lorentz invariance is an
exact local symmetry in GR (whereas Poincare symmetry is only approximate)
since the tangent space is completely unaffected by any curvature.

SR is ruled by ds2 = dxµdxνηµν = ds 12 under Lorentz transformation

x 1µ = Λµνx
ν + aµ (5.15)

dx 1µ = Λµνdx
ν (5.16)

ηµν = ΛαµΛ
β
νηαβ (5.17)

GR on the other hand doesn’t specify the coordinate transformation, a general Λµν =
Bx 1µ

Bxν
leaving the line element invariant, ds2 = dxµdxνgµν = ds 12. Again, under small

coordinate transformation

d4x 1 = detΛd4x (5.18)

g 1αβ = (Λ´1)µα(Λ
´1)νβgµν (5.19)

detg 1µν = detΛ´2 detgµν (5.20)

d4x 1
a

´g 1 = d4x
?
´g (5.21)

5.3 Coupling constants

The reason we want finite couplings and a finite number of couplings as free parame-
ters is that couplings correspond to observables and those observables should be mea-
surable and finite in order to be physical.
The coupling in electrodynamics is coupled to charge, in gravity it is coupled to stress-
energy.
The most studied truncation of Einstein Hilbert contains two coupling ’constants’ with
canonical mass dimensions,

[Λ] = 2, [G] = 2´ d (5.22)

the cosmological constant and Newton’s coupling in d spacetime dimensions.
Now the coupling constants aren’t constant but depend on the energy scale. This was

12Covariance is defined as the invariance of the form of a physical law under a given transformation.
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already proven for the electric coupling whose running can be calculated with the help
of the WARD identities from the wave function of the photon (or the electron-photon
vertex). Similarly, the QCD coupling can be calculated with the help of Slavnov-Taylor
identities from different vertex and propagator diagrams. Famously, QCD is asymp-
totically free at high energies. Recall also, that we have already seen a running of
couplings in 7.8.

1. QED: LQED = Ψ(iγµB
µ´m)Ψ´ eΨγµΨAµ´

1
4FµνF

µν with the coupling e, the
charge of the fermion

2. QCD: LQCD = Ψ(iγµB
µ´m)Ψ´ giΨγµTiΨG

µ
i ´

1
4GiµνG

µν
i with the couplings

gi, i = 1, ..., 8, the strong couplings

Those are the free parameters that need to be measured in the experiment. It was
validated that the value of the couplings, from now on αEM = e2

4π and αS =
g2
S

4π is
indeed dependent on

a

Q2, the momentum („ energy) at which the measurement
takes place. The electric charge increases with smaller distances (= higher momenta),
but saturates to 1

137 at low energies.13 The coupling strength of the strong coupling,
however, shows an opposite behaviour. The colour charge increases with the distance
from the bare quark charge (confinement) and becomes asymptotically free (arbitrar-
ily small) at smallest scales (antiscreening).
The gravitational constant should show antiscreening behaviour as well. Just like the
improvement from Coulomb to Uehling potential.14

Weinberg [86] emphasised that the negative mass dimension of the gravitational con-
stant is the root of gravity’s non-renormalisability in perturbation theory. A Feynman
diagram of order N behaves at large momenta p like

ş

pA´Nddp where A is depen-
dent on the process and d is the mass dimension of the coupling. For d ă 0 such as
Newtons constant, [G] = ´2, this integral diverges for sufficiently high orders. He
actually proved the renormalisability for gravity in 2 + ε dimensions. However, the
problem of 4 dimensions remained first unsolved.

5.4 The Advantage of Asymptotic Safety

First of all, inflation takes place at early times and high energies scales were a theory
of quantum gravity is needed15.
The idea of asymptotic safety is that an infinite number of counterterms combine in a
way such that predictions can be made. AS/its RG flow connects large and small scales

13Reason is that at smaller distance, bigger Q, the screening behaviour is vanishing small , the cou-
pling can become large.

14VCoulomb = ´ e2

4πr is improved by e2 Ñ e2(k) = e2(k0)(1 ´ b ln k
k0
)´1,b = e2(k0)

6π2 Ñ VUehling „

´
e2( 1

r0
)

4πr (1 + b ln ( r0
r
)), r0 = 1

k0
, first treatments by Uehling, 1935, see also 7.13.4. The minus sign

indicates screening behaviour. For gravity we intuitively expect a cloud of virtual gravitons that increase
the effective mass measured from far away i.e. produce an antiscreening effect for a test particle, we
expect something of type G(k) = G0(1 + aG0k

2)´1.
15For a short overview of QG/quantisation approaches, see ??
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and hence, helps to identify the relations of large scale quantities and microscopic ones
(„ LSS, quantum fluctuations). Woodland (2009) gives an example for a higher order
Lagrangian16. The Lagrangian gets an additional second derivative term

L =
1
2
mq̇2

´
1
2
mw2q2

´
1
2
gm

w2
q̈2, 0 ă g ăă 1 (5.23)

With the standard boundary condition q(0), ˙q(0) this cannot be solved due to the
higher derivative (HD) terms in the equation of motion. Substituting the ansatz q(t) =
ř∞
n=0 g

nxn(t) gives via the standard perturbation theory approach for each order17

ẍ0 +w
2x0 = 0

ẍ1 +w
2x1 = ´

1
w2

d4x0

dt4

ẍ2 +w
2x2 = ´

1
w2

d4x1

dt4

...

(5.25)

where the sources are always evaluated at the previous order. This can be solved
exactly with the ansatz q(t) = Acos(k1t) + Bsin(k1t) + Ccos(k2t) + Dsin(k2t),
q0(0) and ˙q(0) and integrating the 0th order etc.

q = q0cos(kt) +
q̇0

kt
sin(kt), k = w

a

1˘
?

1´ 4g
?

2g
(5.26)

The HD term has an effect, it shifts the frequency depending on the coupling constant.
Still it gives a predictive theory if we disregard the negative mode since no HD dofs
are created. If the negative mode is taken there is a negative dof.18 Can we use the
same approach for quantum gravity? For low energy modes we can use standard
perturbation theory, for higher energies the theory isn’t predictive anymore.
There are two challenges that one encounters:

1. changes in lower derivative dof

2. new dofs by higher derivative terms (with opposite kinetic energy)

Stelle [79][78] showed that 1
16πG+c1R

2+c2R
2
µν is renormalisable, but contains ghosts.

The spectrum of particles contain massive negative energy spin 2 modes. Taking gen-
eral covariance as constraint, the general effective Lagrangian density is of the type

L =
?
´g(λ+

m2
p

16π
R+aRµνR

µν+bR2 +cRµνρσR
µνρσ+

d

m3
R3 +e�R+ ...) (5.27)

16HO Lagrangians give higher derivative terms in the equation motion.
17The general Euler Lagrange equation is given by

BL

Bq
´
d

dt

BL

Bq̇
+
d2

dt2
BL

Bq̈
(5.24)

-same derivation as for the 1-derivative case.

18The amplitudes are A/C =
q0k

2
2/1+q̈0

k1
2/1´k1/2

2
and B/D =

q̇0k
2
2/1+ ;q0

k1/2(k
1
2/1´k1/2)2 .
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where a,b,c,d,e are all dimensionless and m should be the smallest scale (dimensional
power counting), the first term is proportional to the cosmological constant, the sec-
ond is the usual Einstein-Hilbert term. Those terms are not all independent (before
investigating the action one should look for total derivatives or terms that vanish when
we evaluated the solutions of eoms below that order). In four dimensions the curva-
ture squared terms are related to a topological invariant19 (Ñ total derivative),

χ = RµνρσR
µνρσ

´ 4Rµνµν + R
2 (5.28)

Hence, up to second curvature order, one of the terms can be substituted, e.g. (a,b, c)Ñ
(a ´ c,b + 4c, 0). Stelle investigated the (a,b) case and showed that the additional
term modifies gravity at small scales. In fact, the term can also be rewritten in terms
of the Weyl squared tensor.

CµναβC
µναβ

„ RµνR
µν
´

1
3
R2 (5.29)

in 4 dimensions which I will explain more in detail later.

S =

ż

d4x
?
´g(´αCµναβC

µναβ + βR2 + γR) (5.30)

The advantage of asymptotic safety is that it predicts finite parts for all counter terms
in such a way that the theory can be used at ALL energy scales. Other schemes such as
the normal regularisation with a UV cutoff or perturbation theory (infinite coefficients,
finite many counter terms can cure divergences order by order) weren’t able to solve
the non-renormalisability.

5.4.1 Effective Field Theory

We know that the fundamental theory (whatever it may be and we may call it quan-
tum gravity) has to reduce to classical GR at low energies which has been tested and
validated. Approaches such as String Theory or LQG suffer from the transition prob-
lem (HE to LE), but as we have and will see(n) AS and its functional RG are based on
the connection of the UV and IR regime.
An effective field theory is a theory that is valid up to a certain energy scale. Quantum
loop corrections don’t change predictivity at low energy values. GR can be classified
as EFT that doesn’t need to be quantised itself, but as low energy theory of a more
fundamental theory. So far, GR and QFT, have been tested and validated and are
mathematically consistent in their regimes. Together they are well defined at all ac-
cessible scales.
The quantum correction for Newton’s potential20 (Donoghue, [15])

V̂ = ´
Gm1m2

r

(
1 +

3G(m1 +m2)

r
+ const

G h

r2c3
+ ...

)
(5.31)

19For a compact manifold of two dimensions, the Euler number is χ(M) = 1
32π2

ş

M

?
´gXd4x. This

can be extrapolated to higher (even) dimensions.
20Basically analogue to QED’s Uhling potential, the quantum corrections to the Coulomb potential.
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where I re-introduced  h and c.21 The first part is the usual Newtonian potential, the
second part is from GR only, the third term is due to quantum gravitational effects,
already indicated by the dependence on G and  h.22

He first calculated [16] the gravitational scattering amplitude between two masses to
define the potential (to one loop order) in momentum space.

xf| T |iy = (2π)4δ(4)(p´ p 1)M(q) = ´(2π)δ(E´ E 1) xf| V̂ |iy (5.32)

following usual QFT rules (p incoming, p 1 outgoing momentum) gives the tree-level
contribution

M1(q) = ´
4πGm1m2

q2
Ø V1(r) = ´

Gm1m2

r
(5.33)

in coordinate space23 and similar calculations for higher orders graphs resulting in
5.31 where I also added the usual special relativistic contribution via part of the tri-
angle contribution as well as the double seagull and vertex correction and vacuum
polarisation (calculations can be found in Donoghue’s works, see also 7.12.2).
At the Earth’s surface the correction for const.= 41

10π is of order 10´84, almost vanish-
ing. Nonetheless, we cannot simply ignore its quantum effects.
The quadratic Stelle theory in linearised gravity gives a spherical symmetric static so-
lution in terms of a Newton and two Yukawa potentials (or unboundedness at infinity
which has to be eliminated by boundary conditions)[78].

V =
´2MG
r

+
8GM

3r

(
e´m2r ´

1
4
e´m0r

)
(5.35)

with m0 corresponding to the scalar and m2 to the spin 2 ghost (see later, 7.13.5).
The problem of non-renormalisability becomes an actual problem at high energies.
At low energies the scale dependence between the characteristic energy scale of the
experiment E and the heavy scale up to the theory is defined M, 9 E

M
, suppresses the

higher order divergent part since at low energies E ăăM. In general EFT we fix the
level of precision and sort by E

M
at a given order all terms that contribute to the action.

As mentioned and below explained in detail we cannot use standard perturbation
theory to quantise. The root of the problem lies in the negative dimension of the
gravitational constant. In four dimensions we can define the dimensionless coupling

g = GM2 (5.36)

where M is the typical energy scale (this plays an important role in AS as well).
The idea behind EFT is to have a well defined and predictive theory up to that scale
where the theory cannot make any predictions anymore. First, one has to identify the

21There is also another treatment by him which gives an antiscreening effect, 1994. Here,G(r) =
G
(
1´ τGN h

r2

)
+G

(
1´ τGN h

r2

(
1´ τGN h

r2

))
+ ... = G

1+τGN
 h

r2

, τ = 167
30π .

22In momentum space the terms correspond to „ ´ 1
q2 ,´

G
?
q2

q2 and ´Gq
2 lnq2

q2 , respectively.
23

V(x) =
1

4m1m2

ż

d3q

(2π)3 e
iqxM(q) (5.34)

99



most general Lagrangian (and the low energy dofs) and order the terms by their en-
ergy order. One starts with the renormalisation of parameters at lowest order. Then,
one ’connects’ the theory to the real world by conducting experiments to measure the
parameters. The ones that are left are the predictions of the theory. With a suppres-
sion scale of Planck size „ 1018GeV, the inflation energy scale „ 1016GeV, our testing
possibilities at the LHC„ 10TeV and direct testing of gravity („ 60´300µmØ 0.1eV)
are well below mp. So far we seem to have evaluated two different theories, the low
energy regime with klate = H0 „ 10´33eV and the high energy regime with kinf = Hinf.
Additionally, we have also seen that in Starobinsky inflation the R2 should dominate at
early times and EH at low energies. The need for sufficient inflation gives constraints
on the coefficient of R2 and today’s measurements give constraints on the cosmologi-
cal constant and Newton’s constant.
Since there is some overlap between an EFT and the RG approach let us summarise
how to use EFT in a theory as inflation (Donoghue)

1. identify the low energy degrees of freedom and the symmetries of the under-
lying theory (GR+inflation: needs to reproduce usual EH and on cosmological
setting the LSS today, general covariance, local Lorentz invariance and any other
symmetries that are constraint by the underlying inflation model)

2. write the most general effective Lagrangian (e.g. EH, for Starobinsky inflation as
an R2 term) which should be ordered by local energy expansion

3. calculate the action, starting with the lowest order

4. renormalise

5. match your findings (use observational data or measure free parameters in ex-
periments)

6. now you can use the theory to give further predictions

To see the direct difference between an EFT and the RG treatment we conclude that
an EFT is valid up to a certain energy scale whereas the RG is defined at all scales.
Both can be applied in truncations (in EFT the ground state would be the EH term +
inflaton term) and both cover symmetry principles such as general covariance (and
any other symmetry the inflaton brings into the theory).
Take, for example, the multipole expansion of electrostatics, V(~r) = 1

r

ř

l,m
blmYlm
rl

with a spacing of d, r ąą d, we can rewrite the coefficients into dimensionless b 1lm =
blm
al

. We can treat two different scales, the IR on r scale and the UV on d scale. If
we measure the b coefficients we can calculate b 1 (either by distances or momenta,
r „ 1

p
for the IR and a „ 1

Λ
for the UV) and estimate the behaviour of the UV from

the IR. However, we won’t be able to make predictions when our experiment has
reached its maximal resolution given by some maximum l. To improve this we can
either improve the resolution, more precise measuring in the LE limit or measure at
HE. In the RG treatment we don’t suffer from this issue when we assume that a FP
exists. We have already seen that in the Kadanoff picture, the RG technique is based
on scale invariance at the FP, the behaviour is the same independent of the resolution
scale. In EFT one often expands around the small parameter α = a

r
, in the FRGE

100



there is no small parameter and the Wetterich equation makes the EXACT treatment
possible. However, we need to find an identification and RG improvement. A generic
EFT treatment of quantum gravity would include all diffeomorphism invariant terms,
such as Riem2, but also the ∇2 term, there are many different truncations that have
been analysed in AS.

5.5 Einstein-Hilbert Truncation

As already shown Einstein’s GR is perturbatively non-renormalisable.

S =
1

16πGN

ż

d4x
?
´gR (5.37)

Expanding the metric around Minkowski, gµν = ηµν + κhµν, with κ = 8πGN, pro-
duces infinitely many powers of hµν which is the spin 2 field (gravitons, 2dof). Each
term carries a quadratic term in momentum, such that the overall divergence X in
mass units is

X = l(d´ 2) + 2 (5.38)

[spacetime dimension]-[momentum]2+[2 R derivatives], at loop order l and a certain
order in fluctuation expansion. It is not possible to shift those infinities into the pa-
rameter (which would be GN here). The biggest divergence occurs if we have loops
only - taking diffeomorphism symmetry into account we need to add the cosmologi-
cal constant (we want a momentum independent diffeomorphism invariant term). It
follows in ´2 steps, first we add two external momenta (equals 2 derivative term),
then 4 etc. We cannot have odd terms as we wouldn’t be able to contract them to
invariant scalars. The divergent terms that are produced from the Ricci scalar can
be put into Newton’s constant but in the end we are left with a „ log divergence at
1-loop order. That is the reason ’t Hooft et al. (for one-loop) [92] and later Goroff et
al. (higher loops) [70] added curvature squared terms and higher, respectively.24 It
was shown that the 1-loop corrections (in 4 dimensions) produces UV divergences in
form of curvature squared terms. In dimensional regularisation their result was

Γ (1) =
1

d´ 4

ż

?
g(

1
120

R2 +
7

20
RµνR

µν)

Γ (2)
„

G

d´ 4

ż

?
gRµναβR

σρ
µνR

αβ
σρ

(5.39)

The Riemann squared term is eliminated by the Gauss Bonnet theorem25 (it can be
re-expressed in terms of R and Rµν an then produces a topological invariant - note

24The divergence at two-loop level can be paramterised as „
?
´gRαβµνR

µν
ρσR

ρσ
αβ.

25A topological invariant is a property of a topological space that is invariant under homeomorphism.
An example is the Euler characteristic χ. On a compact orientable (Riemannian) manifold M in 2
dimensions

ż

M

KdA+

ż

BM

kgds = 2πχ(M) (5.40)

is valid (Chern, Shen), K is the Gaussian curvature, kg the geodesic curvature of the boundary BM and
the integration is over the surface dA of M and the line element ds of the boundary. This result was
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that this is not the case in d ě 6 which does include Riemann squared terms.) In pure
gravity divergences can be put into field renormalisations, but as soon as we allow
interaction (we seem to live in a universe with matter - ’matter matters’, Eichhorn
et al.) divergences occur that cannot be eliminated, not even when we employ the
’improved energy momentum tensor’26.
With each term new couplings arise whose low energy values should then be evaluated
in measurements. However, infinite values need infinitely many experiments and the
theory loses its predictivity.
Hence, EH cannot be perturbatively quantised without losing predictivity.
In asymptotic safety we find a NGFP in the UV making gravity well-defined at high
energies and the theory is non-perturbatively renormalisable.
An overview on the quantisation of gravity and the literature background can be found
in the appendix, 7.12.
In GR, gauge invariance causes some problems as there exist infinite gauge copies in
the path integral. Hence, we need to fix the gauge. However, some gauges introduce
non-physical dofs. They can be eliminated by the Feynman-DeWitt-Faddeev-Popov
trick27 7.12.1.

5.5.1 RG Flow

A QFT is entirely defined by the n-point correlation functions ă φ1, ...φn ą that can
then give rise to physical observables. In the Wilsonian idea of renormalisation we
need to mathematically formulate a coarse graining where dofs are integrated out and
make the theory well defined and predictive at all scales. We start with the already
mentioned path integral [42][41]

ż

Dφe´S[φ]+∆Sk[φ]+Jiφ
i

= eW[K] (5.43)

with the external sources J for each field φ, the usual action S and regulating term
∆Sk = 1

2R
ij
kφiφj and Wk the Schwinger functional. The effective average action

can be calculated (= generating functional for 1PI correlation functions). Regulator
functions should satisfy the following conditions:

1. p2

k2 Ñ 0, Rk(p2) ą 0.

proven for higher (even) dimensions as well (Weil, Allendorfer). For 2n = 4,

χ(M) =
1

a

(2π)2

ż

M

Pf(´R) =
1

32π2

ż

M

(RµναβR
µναβ´4RµνRµν+R2 =

1
4π2

ż

M

(
1
8
CµναβC

µναβ+Q

(5.41)
where Pf is the Pfaffian integral of the associated curvature form of the Levi-Civita connection and Q
is dependent on the Ricci scalar and tensor such that one can conclude

CµναβC
µναβ „ RµνR

µν ´
1
3
R2 + vanishing terms (5.42)

Obviously, if this term couples to matter it doesn’t vanish anymore.
26The Lagangian gets two extra terms „ aRφ2,bRµνBµφBνφ. See also ’A new improved energy

momentum tensor’, 1969
27Exponentiating gauge fields as ghost particles.
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2. k2

p2 Ñ 0, Rk(p2)Ñ 0.

3. full quantum theory for kÑ 0

4. microscopic action (classical in perturbative setting) kÑ∞
The modified Legendre transform of the Schwinger functional gives the effective aver-
age action Γk which can then be fed into the Wetterich equation (wrt the RG time Bt =
kBk).
In the Wetterich equation the derivative wrt RG time peaks at q2 „ k2 and vanishes for
q2 Ñ∞. The „ (q2 + rk(q

2))´1 takes finite values for qÑ 0, k´2 and is decreasing
for higher momenta until it vanishes for q Ñ ∞ as well, 5.2. To write it in some
neater form:

BtΓk =
1
2
δki
(
Γ (2) + Rk

)´1

kj
BtR

ij (5.44)

To summarise the advantages of renormalisation group flow in this setting I will give
the most important properties [65]:

1. the RG flow contains all information, if one knows the full effective action, one
has the full ’solution’ of the problem.

2. finite in the UV and IR, a well defined and predictive theory

3. Wetterich[87] realised that the equation is basically a loop with regulator inser-
tion Ṙk

4. one arrives at a PDE with the boundary conditions at a scale k = Λ (if the theory
was perturbatively renormalisable one would have Γk=Λ „ Scl

28

5. we have a well defined QFT, in the perturbative regime and beyond.

6. the RG flow can undergo well chosen truncations and optimisations. Impor-
tantly, the quantum effective action should not depend on the regulator choice.29

7. Importantly, the cutoff described includes the IR cutoff (all modes below k get
an effective mass) and we have implemented the k-dependence.

28It isn’t that obvious that it remains finite as we assume that a global flow with well defined boundary
conditions exists. This leads us to the need of truncations.

Γ̇k = ´
1
2
Bt log Fii|

i
i ´

1
2
Γ̇
(2)ij

k Fij (5.45)

with F being the ’loop part’. Naively integrating the rewritten Wetterich equation would lead to diver-
gences for ΛÑ∞

Γk = ΓΛ ´
1
2

(
log Fii|

k
Λ +

ż k

Λ

dtΓ̇
(2)
kijF

ij

)
, lim

ΛÑ∞ Γk Ñ∞ (5.46)

29Common regulator choices are the exponential cutoff „ p2

e
p2

k2 ´1
, Litim’s optimised cutoff „ (k2 ´

p2)θ(k2´p2) and the sharp cutoff„ p2

θ(k2´p2)´p
2[43]. The Litim cutoff is 0 for momenta above k2 and

for momenta below the propagator „ 1
p2+Rk

becomes constant as itself adds a momentum dependent
mass term „ k2 ´ p2 such that ALL IR modes are treated with the same weight.
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An example can be found in the appendix 7.13.1.
The properties of the physical system we want to analyse are encoded in the critical
exponents near the fixed point. The solution we aim for are the flow equations in the
manifold S ,

˙̂gi = βi(ĝ) (5.47)

where the β-functions can be interpreted as vector field, β = (βi). A fixed point is a
point in that manifold that vanishes for ALL

βi(ĝ˚) = 0 (5.48)

(using the Kadanoff picture, the correlation length at the FP is equal to the scaled
length, ζ(ĝ˚) = ζ(ĝ˚)

b
, the RG time is t = lnb). The FP is fully scale invariant, the

critical FP exits for ζ(ĝ˚) Ñ ∞. The set of all points under the RG flow projected on
the FP is called the critical surface (IR), under the inverse flow we project onto the
commonly used UV-critical surface (flow starts at FP and moves away from it). We will
see that the dimension of this surface should be finite and so far 3 dimensional30. The
lower its dimension the better the theory as the dimension corresponds to the number
of free parameters that we need to get from experiments.
Back to the stability question. Around the FP we can linearise the flow, ĝi = ĝi˚+δĝi

˙̂
ig = kBkĝi = ´βi(ĝ) = ´

ÿ

Mijδĝj, Mij =
B

Bĝj
βi(ĝ˚) (5.49)

where M is the stability matrix. The ’perturbation’ can be written in terms of fields
and coefficients whose rate of change wrt RG time is proportional to itself and the
so-called critical exponents.31

Mva = ´θav
a, δĝj =

ÿ

a

ωav
a
j , ω̇a = θaωa Ø ωa = ω0

a(e
t)θa (5.50)

The sign of the real part of the critical exponents θa describes the behaviour under the
RG flow.

1. Reθ ą 0: relevant (grows under RG flow)

2. Reθ ă 0: irrelevant (decreases under RG flow)

3. Reθ = 0: marginal (HO terms decide on its behaviour)

30Even including HD operator the dimension seems to be robust. Some investigations are currently
done with quadratic operators, such as Riemann2 which seem to give a four dimensional surface.

31It isn’t proven, but likely assumed that those are universal which means that the behaviour near
the critical point depends on the critical exponents rather than from other details of the theory. With
the critical exponents we could define universality classes i.e. systems of same IR behaviour. We al-
ready know from statistical physics that the behaviour of systems near phase transitions is quite similar,
the correlation length proportional to the power of the temperature-critical temperature difference

m´1 „ |T ´ Tc|
´θ, with the critical exponent given by θ =

(
B lnm2

0
B lnm2

)´1
can be found in specific heat,

spontaneous magnetisation and other formulae (see e.g. Stanley, 1971).
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The number of positive θ, m, in the n-dimensional parameter space gives the finite
(and small) dimension of the UV critical hypersurface (for the RG time t Ñ ´∞ the
coefficientsω0

m+1, ....,ω0
n = 0 leaving m coefficients of free choice), dim= m. Note for

the IR critical surface we would have the opposite behaviour, such that its dimension
is n´m.
Now applying this RG analysis to the FRGE of asymptotic safety with the dimensionless
couplings

ĝi = giΛ
´[gi] = ĝ0

ie
[gi]t, ĝ0

i = Λ(ĝo)
´[´gi]g (5.51)

gives the β-functions
˙̂gi = ´βi(ĝ) = ´[gi]ĝi (5.52)

A FP where all β-functions vanish can be Gaussian if ĝi˚ = 0 for all i (with criti-
cal exponents equal to the corresponding mass dimension of the dimensionful cou-
pling, θi = [gi]-with renormalisability if all are relevant or marginal) or non-Gaussian
(NGFP) if all β-function vanish, but away from the origin. The calculations are as the
ones above for the dimensionless, but running couplings ĝi(k) = k´digi(k) which
can be an infinite set of couplings.

kBkĝi(k) =
∞
ÿ

α=1

Miα(ĝα(k)´ ĝα˚), Miα =
Bβi

ĝα
(g˚) (5.53)

again with the critical components that describe the RG behaviour near the FP given
by

ÿ

α

Miαv
a
α = ´θav

a
α, ĝi(k) = ĝi˚ +

ÿ

a

ωav
a
i θa (5.54)

Now sending k to infinity the number of critical exponents with positive real compo-
nent is the dimension of the UV critical hypersurface (as ωa = 0 for all a with Reθa.
An example can be again found in 7.13.3.
Worth mentioning is that the RG flow can be analysed via different approaches of func-
tional RG methods (FRG). The Polchinski equation is a functional equation obeyed by
the interaction part of the Wilsonian action (1983).
ERGE (Exact Renormalisation Group Equation) is its Legendre transform giving the
effective average action by using the Wetterich equation (1993). Γk is a functional of
infinitely many couplings, the ERGE contains all their β- functions.
Worth mentioning is also that AS is nothing else than the quantum realisation of scale
symmetry since we relate different physical scales by the RG flow via the relations of
the couplings of the underlying system. Symmetries give the restrictions on possible
interaction structures. This helps us to reduce the dofs and only measure a (small)
number of free parameters. In QFT quantum fluctuations lead to scale anomaly, the
breaking of the classical scale symmetry since they have scale dependence (the value
of the interaction strength is proportional to the scale). A priori we do not know
whether the theory is well defined at a certain scale if it is valid at another scale. In
asymptotic freedom we are fortunate of having vanishing quantum fluctuations, in
asymptotic safety we have EXACT scale symmetry at the FP.
If we follow usual EH scale invariance is obviously broken due to the dimension of G.

5.5.2 Quantum Einstein Gravity
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Figure 5.2: Behaviour of the cutoff and its
derivative wrt RG time. An exponential cut-
off shows such an R behaviour. Litim’s cutoff
would be linearly decreasing and then vanish-
ing for k2 = p2.

I want to apply the RG method to-
wards gravity. Reuter analysed the RG
flow in 2 + ε and 4 dimensions and
concluded that the gravitational con-
stant is antiscreening and increasing at
large distances (see also [72]32, [64]).
The degrees of freedom is the metric
gµν

33 which is invariant under diffeo-
morphism. The Euclidean path integral
is given by

ż

Dgµνe´S[gµν] (5.55)

The next step is the background field
method where the metric is split into the
non-dynamical background and the fluc-
tuation part. For a detailed treatment of
linearised gravity, have a look at 7.12.1.

gµν = gµν + hµν, Dgµν = Dhµν (5.56)

We further proceed [65] with gauge fixing 7.12.1 34 and the integration over the
Faddeev-Popov ghost fields 7.12.1 and the regulator term

DhµνDCµDCµe´S, S 1 = S[g+ h] + Sgf[g,h] + Sgh[C,C,g,h] ´ Ssource + δSk = eWk

(5.57)

∆Sk = ´
1
2

ż

d4x
a

ghRkh (5.58)

Ssource = ´

ż

d4x
a

g(jµνhµν + σµC
µ + σµCµ), (5.59)

ă hµν ą=
1
?
g

δWk

δjµν
, ă Cµ ą=

1
?
g

δWk

δσµ
, ă Cµ ą=

1
?
g

δWk

δσµ
(5.60)

The effective average action is then given by35

Γk[g,g, cµ, cµ] = Γk[h,g, cµ, cµ]|h=g´g =
ż

d4x(jµνhµν + σµc
µ +ωµcµ)´Wk[j,σ,σ,g]|source ´ ∆Sk[h, c, c,g]

(5.61)

32In 1996, Reuter wrote the exact RG equations for gravity but left the result in a form that wasn’t
really calculable. Improved cutoff forms helped this issue later on.

33There is also research going on in using affine gravity formalism or Einstein-Cartan where the metric
is added by the vielbein eaµ which leads to the inclusion of torsion and coupling to fermionic fields.

34The main two choices are the background transformation, LVhµν = δhµν and LVgµν = δgµν,
and the quantum transformation, LVgµν = δhµν and LVgµν = 0 under coordinate transformation,
xµ Ñ xµ ´ Vµ.

35To be precise,Wk and Γk also depend on the sources that couple to BRS variations of the fluctuations
and the ghost fields. The BRS variation of the total action action only contribute by the cutoff and source
terms as modified Ward identities were derived.
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which is invariant under field diffeomorphism,Γk[φ] = Γk[φ+LVφ] and satisfies the
boundary condition limkÑ0 Γk Ñ Γ0 and limkÑ∞ Γk Ñ S + Γgf + Γgh and satisfies the
Wetterich equation.
Using Einstein-Hilbert

1
16πGk

ż

d4x
?
´g(´R+ 2Λk) (5.62)

The dimensionless couplings are

g(k) = k2Gk, λ(k) = k´2Λk (5.63)

in arbitrary dimensions, gk(k) = kd´2G(k), λk(k) = k´2Λ, with the β-functions

ġ = kBkg = βg = (d´ 2ηN)g, λ̇ = βλ (5.64)

where ηN = gkB1(λk)
1´gkB2(λk)

is the anomalous dimension (’quantum scaling’ dimension, at
the FP, -2) and a function of the dimensionless cosmological constant and the cutoff.
The β-function of Λ is a bit more involved. We have a GFP, g(k) = λ(k) = 0, and a
NGFP which can be numerically calculated in the upper right quadrant of the g ´ λ-
space. At large distances the Newton constant goes like k2, at small distances it thus
has a fixed value. Once past the GFP in the EH truncation, the behaviour is given by
the canonical scaling.
The (dimensionful) Newton constant is finite for k Ñ 0, G0, and falls like „ g

k2 for
large momenta, vanishing for k Ñ ∞. The cosmological constant is finite (small)
for vanishing momenta, increases with „ k4 at Planck scale and „ k2 above. Hence,
g(k) = G(k)k2 approaches a fixed value for large k. The product of g˚λ˚ is constant
at and nearly constant near the FP and for pure gravity of order unity.
The spiralling into the FP in the UV is due to the complexity of the critical exponents,
only the real part decides on the behaviour near the FP (relevant/ irrelevant). The
FP has been numerically calculated and also proven against the change of cutoff func-
tions, the result seems to be stable. Another example of calculating the β-functions
and fixed point can be found in the appendix 7.13.1. EH stability coefficients are ob-
viously both positive.
In the Einstein-Hilbert truncation there is a GFP and a NGFP in the upper right quad-
rant of the λ ´ g diagram (other couplings can be included as well, so we should
imagine this embedded in a higher dimensional space).36 With the help of asymptotic
safety a QFT (also a quantum theory of gravity) can be well defined at ALL energy
scales WITHOUT being perturbatively renormalisable. The theory is asymptotically
safe if it lies on a trajectory of the RG flow that ends at a UV FP.

5.5.3 FRG and Perturbation Theory

When calculating the quantum corrected Newton potential it is interesting to note
that the coefficient in front of the non-analytic part indicates a screening behaviour

36Note, the dimensionless couplings don’t need to coincide with our observations of the values of G
and the positive cosmological constant, as long as the it flows to the right values in the low momenta
regime. Nonetheless, most truncations have given a similar result.
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Figure 5.3: Template phase diagram for quantum gravity in the Einstein-Hilbert approxi-
mation (Plot taken from Reuter&Saueressig, 2002). In the EH setting a NGFP is found for
positive parameters (here the gravitational coupling, cosmological constant - both dimension-
less and dependent on k) and a trivial GFP at the origin. The arrows point towards the lower
momentum. On the separatrix we find a vanishing renormalised cosmological constant.
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of Newton’s constant, G(r) Ñ G(1 + a hG
r2 ). Donoghue calculated a = 41

10π , but in
order to be antiscreening a should be negative. We see that those approaches are
quite different. Nonetheless, there has also been some work on asymptotic safety
in a perturbative setting by Niedermaier. If gravity has an NGFP then it should be
somehow visible in PT as well. He re-introduced perturbation theory treatment in the
RG method and analysed EH as well as higher derivative terms. With perturbation
theory he calculated the 1-loop β-functions with indications of asymptotic safety.
In the following I would like to give a short example using FRG and a perturbation
ansatz.37 The anharmonic oscillator gives an action of

S =

ż

dt

(
1
2
ẋ2 +

1
2
ω2x2 +

1
24
λx4

)
, ω2, λ ą 0 (5.65)

where the dot is wrt t̂ - not to be confused with the RG time. In order to emphasise
the advantage of the FRG method I assume a large coupling, λ ąą 1. The effective
average action is given by

Γk =

ż

dt(
1
2
ẋ2 + Vk(x)) (5.66)

The variation wrt x(t1), x(t2) is

Γ
(2)
k =

δ

δ(t2)

ż

dt̂(ẋdt̂δ(t̂´ t̂1) + V
1
k(x)δ(t̂´ t̂1))

= (´B2
t1
+ V 2k)δ(t1 ´ t2)

(5.67)

which gives a p2 + V 2k term after Fourier transforming (p2 = ´B2
t̂
...). Following

Reichert’s choice of using the Litim regulator Rk = (k2 ´ p2)θ(k2 ´ p2), δtRk =
2k2θ(k2 ´ p2) + 2k2(k2 ´ p2)δ(k2 ´ p2) = 2k2θ(k2 ´ p2)38 the propagator can be
calculated

1

Γ
(2)
k

=
1

p2 + (k2 ´ p2)θ(k2 ´ p2) + V 2
=

1
k2 + V 2

, p2
ď k2

1
p2 + V 2

, p2
ě k2

(5.68)

This is the nice feature of the cutoff choice. Modes below k are equally weighted. I
substitute the propagator and Ṙk into Wetterich’s equation integrating over space and
momenta which simplifies to

BtVk =
1
2

ż

p

BtRk

p2 + Rk + V 2k
=
dp

2π
2k2θ(k2 ´ p2)

k2 + V 2k
(5.69)

=
1
π

k3

k2 + V 2
(5.70)

d

dk
Vk =

1
π

k2

k2 + V 2k
(5.71)

37Idea from M. Reichert.
38xδ(x) = 0
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Our aim is it to get an expression for the potential energy of the form Vk = Ek +
1
2w

2
kk

2 + 1
24λkx

4 + ... with the boundary condition that at the cutoff the couplings
approach the given values in the action, ωΛ = ω, λΛ = λ as Λ Ñ ∞. We note that
the ground state energy is depending on the regulator, so we need to ’shift’ it back to
the true value, Êk|ω=λ=0 = 0 with BkEk = BkVk|x=0 = 1

π
k2

k2+ω2
k
,

BkÊk =
1
π

(
k2

k2 +ω2
k

´ 1
)

(5.72)

The β-functions are integrated with the boundary conditions and the values are sub-
stituted back into 5.72 and again integrated we get the ground state energy.39. The
result is

E0 =
ω

2
+

3
4

(
λ

24ω3

)
ω´

3(8π2 + 29)
16π

(
λ

24ω3

)2

ω+ ... (5.73)

One can also see that for the non-interacting, λ = 0,ωk = ω, Hamiltonian the ground
state is given by

E0k = ´
1
π

arctan
(
k

ω

)
+
ω

2
(5.74)

which vanishes for kÑ∞ and for kÑ 0 the energy is, as expected, Ñ ω
2 .

Now compare the result to standard perturbation theory of quantum mechanics, I
assume the simple Schrödinger equation where the coefficients can be calculated re-
cursively. (

´B
2 +

1
2
x2 +

λ

24
x4

)
Ψ(x) = E(λ)Ψ(x) (5.75)

which leads to the expansion E0 =
ř

n an
(
λ

24ω3

)n
ω which could either have been

guessed having the FRG result already or from the corrections up to second order

En = E0
n + xn| ĤI |ny+

ÿ

n‰m

∣∣xm| ĤI |ny
∣∣2

E0
n ´ E

0
m

(5.76)

with the interaction Hamiltonian λ
24 x̂

4, Ĥ0 = 1
2 p̂

2+ 1
2ω

2x̂2 and the ground state known
eigenvalue equation, Ĥ0 |ny = E0

n |ny ,E0
n = 1

2 (2n+ 1). I use the standard ladder
operators to get a formula for En.

â¯ =

c

ω

2

(
x̂˘

1p̂
ω

)
, [â´, â+] = 1 (5.77)

n̂ = â+â´, [n̂, â˘] = ˘â˘ (5.78)

ĤI =
λ

96ω2

(
â+ + â´

)4
(5.79)

En = ω
(
n+

1
2
+

λ

32ω2
(2n2 + 2n+ 1)´ω

(
λ

96ω3

)2

(68n3 + 120n2

+ 118n+ 42
)
)

(5.80)

39For an accurate result the integration should be done numerically as otherwise we (at least) use
perturbation theory to analytically derive the integral, here it should be sufficient to expand in ω2

k =
ω2

0k +ω
2
1kλ+ω2kλ

2 + ... with the conditions ω0k=∞ = ω,ωik=∞ = 0.
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This gives a similar ground state energy as 5.73, but the second term’s coefficient is
21
8 so „ 0.4 of the FRG result.

The 1-loop term is the same, it is universal. The 2-loop term, however, differs. Ob-
viously, the FRG result depends on the cutoff. Comparing both results with ’exact’
numerical integration Reichert concludes that the FRG technique gives a good result.
Again I should emphasise that as soon as the couplings are large perturbation the-
ory is a rather bad choice. Bender and Wu (1969) showed that the expression isn’t
convergent for all λ.

5.6 Inflation in ASG

The asymptotic safety approach has been well established in quantum gravity and a
NGFP was found in different truncations. The application towards phenomenology
was put forward in particle physics, the theory was applied towards black holes and
the early universe. I will give a short overview about asymptotically safe inflation in
the following and investigate how the renormalisation group flow technique may help
to solve the problems of standard inflation.
We have seen that Einstein-Hilbert (EH) is unitary, but non-renormalisable (at least
in the perturbative sense). Higher derivative (HD) terms can renormalise the theory
but one loses unitarity (at least in the perturbative sense...). Corrections of higher
derivative terms should become relevant at high energies/ small scales and hence
have been investigated in settings as the resolution of (black hole) singularities or the
early universe. It is natural to extend it to inflation and also include the technique of
renormalisation group flow and asymptotic safety. With teh help of the RG flow we
can investigate the matching of the UV behaviour (early universe, quantum behaviour)
and IR behaviour (late time behaviour, LSS) which - as we have seen - have/are both
affected by the mechanism of inflation.

5.6.1 RG Improvement

RG improvement is the procedure where we replace the cutoff scale by a physical pa-
rameter. Depending on the problem we want to solve there are different choices.
Moreover we can classify different types on when the RG improvement is done
Level of RG Improvements

1. at the level of the solution

2. at the level of the equation of motions (a)

3. at the level of the action (b)

The first one is probably the most obvious one, the couplings are replaced with
the corresponding running couplings as substituted into the (non-improved) Einstein
equations. It is similar to the treatment we used in the VSL 7.8 theory.
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For (a) we would change the Einstein equations to

Rµν ´
1
2
gµν = 8πG(k)Tµν (5.81)

i.e. substituting the running constant into the equations which we have yet to solve.
Clearly, in the vacuum it is the same as substituting it into the final solution.

(b) is done similar to the improvement of the effective potential in scalar field
theory (Coleman& Weinberg, 1973, see the example in the appendix 7.13.4). The
running coupling is substituted into the action such that we start with a action that
already covers the quantum corrections. This is especially helpful in HD theories where
we identify the k with the curvature as I will show.
But first let me give a short overview of identifications that have been used so far. Prior
to the RG improvement we have to decide on the cutoff identification. One might start
with the RG scale being identified as a function of space or time such as the inverse
time or inverse physical length (simply via dimensional analysis) since we want to
describe spacetime in the end. However, we cannot simply use any distance, we need
to satisfy the underlying symmetries of the theory (at least general covariance and
local Lorentz symmetry, if we include some inflation potential this might introduce
another symmetry as well). In flat space we could simply use k = 1

l
, but as soon as

curvature is turned on we have to be very careful. For example, for static spherically
symmetric Schwarzschild black hole solutions we could use k´1 =

a

gijdxidxj
´1

.
The first step is:

GÑ G(k)Ñ G(k(X)) (5.82)

where X is the chosen identification.
The quantum corrections of the RG improved equations or formulae that describe the
universe’s properties can be studied in the LE limit. If we think we have a well-defined
trajectory it should produce classical behaviour as k Ñ 0 i.e. when we flow to the
IR. The couplings should become constant or vanish and quantum corrections should
be absent and not measurable anymore. We should find a regime where they are still
measurable such that we can compare and test the validity of the quantum corrections
to data. Usually, black holes and inflation are the best labs for that.
RG scale proportional to

• the scale factor (at the FP the RG scale freezes and then the flow evolves with
a(t) Ñ inflation) (Bonanno & Reuter (2002) [62], Solá (2014)), possible for
homogeneous and isotropic states

• cosmological time and the Hubble scale which is quite attractive as the universe
expands in time (Bonanno & Reuter (2002))

• the fourth root of the energy density (Guberina, Horvat & Stefancic (2003),
Bonnano, Koch & Platania (2017))

• cosmological event and particle horizons as k „ H „ 1
dH

(Bauer (2005), Bo-
nanno & Reuter (2006))

112



• curvature invariants such as R
1
2 (Falls, Litim & Schroder (2018)), (RµνRµν)

1
4

(Moti & Shojai (2018))

• ...

Simple Example and Comparison

Let us start with a simple example where I improve the Einstein equations. I assume EH
with a NGFP and the behaviour of the couplings derived by Reuter, FRW and perfect
fluid treatment 7.3. The cutoff is identified with the inverse of time k = k0

t
.

Γk =
1

16πG(k)

ż

d4x
?
g(2Λ(k)´ R) (5.83)

G(k) „ G0(1´ αG0k
2), Λ(k) „ βG0k

4 (5.84)

Rµν ´
1
2
gµν = 8πG(k(t))Tµν ´ gµνΛ(k(t)) (5.85)

Let us find the RG improved first Friedmann equation and the conservation equation.

H2 =
8πρ

3
G(k(t)) +

Λ(k(t))

3
(5.86)

ρ̇+ 3Hρ(1 +w) = ´
ρ ˙G(k(t))

G(t)
´

˙Λ(k(t))

8πG(k(t))
(5.87)

Differentiating the first wrt t and substituting it into the second gives

Ḣ

H2 ´ Λ
3

= ´
3
2
(1 +w) = ´a (5.88)

with k = k0
t

. We see, that if we substitute the running couplingΛ(t) into the equation,
we have a first order nonlinear ODE which cannot be solved directly. Let us first keep
the implicit dependence and introduce H = 1

Ĥ
such that we can rewrite the equation

as

˙̂H = ´a

(
Ĥ2Λ

3
´ 1

)
(5.89)

Ĥ = Ĥ0 + a

(
t´ t0 +

1
3

ż t0

t

Ĥ2Λdt 1
)

(5.90)

where Ĥ0 is Ĥ at t0 (today). We can only proceed to treat the late time behaviour for
small Λ, with the perturbatively treated couplings

G(t) =

(
1´

αk2
0G0

t2

)
, Λ(t) =

βk4
0G0

t4
(5.91)

To get an estimation we evaluate 5.90 at the non-corrected part (a(t´ t0) + Ĥ0) and
re-substitute the result into 5.90 again. The sum of the non-corrected part, the first
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and second order correction and substituting the t-dependence 5.91 is then given by
(after some algebra and only up to order G0)

Ĥ „ a(t´ t0) + Ĥ0 ´G0
aβk4

0

3

(
´
a2

t
´
a(Ĥ0 ´ at0)

t2
´

(Ĥ0 ´ at0)
2

3t3

+
a2

t2
0

(
1 +

Ĥ0 ´ at0

a

)
+

(Ĥ0 ´ at0)
2

3t3
0

= at+ a0 +G0
aβk4

0

3t

(
a2 +

a2
0

3t2
+
aa0

t

)
+ const

a0 = Ĥ0 ´ at0, const = ´G0
aβk4

0

3t0

(
a2 +

a2
0

3t2
0
+
aa0

t0

)
(5.92)

We can now take the inverse to get the quantum corrected Hubble parameter and inte-
grate this to get the quantum corrected scale factor. We could also further proceed and
substitute the result into the improved Einstein equation to get the quantum corrected
density formula. The Hubble term should be proportional to 1

at
with the next term

being the quantum correction and the scale factor should be 9t
1
a 1 ,a 1 = a = 3

2(1+w)
(aÑ a 1 to differ from the scale factor a)

Hq corrected „
1
at

(
1´

c

at
+
( c
at

)2
´G0

aβk4
0

3t2

(
a2 +

3a2
0

3t2
+
aa0

t

))
(5.93)

aq corrected „ At
1
a 1

(
1 +

c

a 12t
+
c2(1´ a 1)

2a 14t2
+G0

a 1βk4
0

a 1t2

)
, A s.t. a(t0) = 1 (5.94)

with const + a0 = c. It turns out that the quantum corrections are of order 1
t
. This

doesn’t agree with Reuter & Bonanno (2002).
They [62] investigated the modification of FRW cosmology with the help of the

exact RG approach and the identification of k = η
t
,η ą 0, t being cosmic time with

the explanation that it should encode homogeneity and isotropy well. With the RG
equations (usual FRGE treatment as described before, Reuter 96/98 and using Litim’s
and the exponential cutoff in the RG flow) of Newton’s constant and the cosmologi-
cal constant they improved the Einstein equations, derived the Bianchi identities and
improved the quantities a, ρ,p all dependent on the cutoff identification time. The
analysis of the FP gives insight on the early time (with the UV FP itself being at QG
scale) and for t ąą tp they are able to analyse FRW cosmology perturbatively. It is
reliable for tÑ 0 as gravity becomes AF G9t2 near the UV FP. They claim to not need
any fine-tuning as there are no ad hoc structures and w ď 1/3 naturally arises. 40

They also analyse perturbations and density fluctuations with approximated RG equa-
tions. During the expansion of the universe (lower k, increase t) fluctuations are

40for flat curvature there exist two limiting solutions for all w and a continuous interpolation between
(t = 0, tcl). Nearby the UV FP where k „ t2 we have attractor solutions with the same universal
behaviour, for positive curvature only w = 1

3 for the FP and w = ´ 1
3 for the classical/perturbative are

possible, there is no consistent interpolation. The RG improvement selects the k = 0 case and removes
the flatness problem. Precisely, there are per se no strong arguments against non-flatness, but if flat
curvature is chosen then there is no naturalness problem. Also, the RG improved spacetime has no
particle horizon for w ď 1

3 , but still does not provide a direct solution to the horizon problem.
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amplified and magnified which can be measured in the LSS of today. The sub Hubble
scale modes evolve according to perturbation theory with a (nearly) scale invariant
spectrum at the beginning of inflation. They emphasise the need of a dynamical and
consistent matching between the HE and LE regime.
Further they analysed a cutoff identification 1

a(t)
(s.t. a 9 ta). k = η

a(t)
in the im-

proved Friedmann equation determines the constant η near the FP,G(t) = g 1˚a
2,Λ(t) =

λ 1˚a
´2 with g 1 = gη´2, λ 1 = λη2.

ρ̇+ 3(1 +w)
ȧ

a
ρ = 0 Ñ ρ(t) =

M

8πa(t)3(1+w)
(5.95)

ρ(t)a(t)3(1+w) =
M

8π
= const (5.96)(

ȧ

a

)2

+
k

a2
=
Λ

3
+

8πGρ
3

(5.97)

Λ̇+ 8πĠρ = 0, Λ̇ =
dΛ

da
ȧ (5.98)

´
dΛ

da
=

M

a3(1+w)

dG

da
(5.99)

where we now see why my result differs from this one (even if we look at the 1
t

solu-
tions), they separately covariantly conserve the energy momentum tensor.

Near the FP gives ka = η =
(
g˚M
λ˚

) 1
4

where M is a constant of integration with canon-
ical dimension 1´3w, consistent with dimensionlessness when the matter is radiation
dominated as it is assumed to be after inflation.
For Both identifications the quantities are characterised by power law behaviour when
taking tÑ 0.

(b) RG Improvement in the Action

Bonnano [11] assumes that the cutoff is proportional to the square root of R and sub-
stitutes this into EH to get an effective f(R) theory, he then analyses the behaviour at
and near the FP (which should always include to calculate the critical exponents).
The effective theory contains a cos logR term which produces an infinite number of
countable de Sitter solutions. He further analyses their stability some of which are
rather unstable. He also tackles the question of inflation and shows that sufficient
e-foldings would be possible to solve the cosmological problems with a long enough
unstable de Sitter phase. He uses FRGE applied to EH. His emphasis on how we possi-
bly best extract all relevant information that is encoded in the running of the couplings
is important to note. How can we identify the energy/momentum scale such that the
spacetime properties of the underlying theory are met? We have seen that spacetime
is the gravitational field with its properties determined by curvature affected by the
matter content and vice versa. Thus, the choice of the cutoff k2 = R is a good one.
The EH flow with the couplings G and Λ is linearised around the NGFP and the ef-
fective Lagrangian shows a similar structure to QCD’s log type leading term. When
applying the action to FRW cosmology, k = 0, its stability properties do not depend
on the scale (but only on the critical exponents which are believed to be universal).
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Moreover, near the FP we have an R2 behaviour suggesting Starobinsky inflation in
the early universe.
Let us compare the results to Hindmarsh and Saltas [71] who use the same cutoff up
to a dimensionless constant ρ factor. They find infinitely many de Sitter solutions (the
evolution of the universe in the λ´g plane (5.4) is the following: the RG flow begins
from an outer de Sitter state in the UV giving naturally inflation, then it passes near
the GFP to approach another de Sitter state giving accelerated late time expansion).
The UV and IR regime is dynamically connected and satisfies the matter type eras.
However, the factor should differ between early and late time behaviour, being 1 to-
day and rather large early on as otherwise large fluctuations wouldn’t be suppressed.
This issue isn’t resolved, but possible solutions are suggested. Primordial inflation is
only possible for ρ large which then makes the mass of the scalar field that is intro-
duced by the effective R2 infinite/nonphysical at late times. The authors suggest that
either the fluctuations that we can observe today were generated in a later ’inflation’
period or to introduce more dofs into the action. A careful analysis of the quantum
corrected action also gives a class of eternal inflation universes and a class of graceful
exit models depending on the sign of the potential at its minimum. For a positive value
it is constrained in SR producing eternal inflation. The calculated spectra indices are
in agreement with Planck data. The identification of k2 „ R using SR gives a cutoff
of „ H2, hence the Hubble constant sets the cutoff scale which is quite natural (I will
this identification to get an estimation on the ghost’s mass).

(a) RG Improvement in the EOMS

Platania uses both RG improvement types in [56]. The identification with a physical
scale and k is classified as decoupling mechanism when it acts as a decoupling scale.
Via the RG treatment of the couplings we can add quantum terms to the classical be-
haviour, here at the level of the action to get the leading order terms of the quantum
effective action.
Following (a) is equivalent to setting ∆tµν = 0 which is the effective energy mo-
mentum tensor. So far, we have treated the UV behaviour at/near the FP and the IR
behaviour for very low k, but there exits also some intermediate regime in which this
tensor becomes important and added on the RHS of the Einstein equations. The modi-
fied Bianchi identities is again derived with the assumption that the energy momentum
tensor is covariantly conserved,

∇µ(8πGkTµν ´Λkgµν + ∆tµν) = (8φG 1kTµν ´Λ
1
kgµν)∇µk(x) = 0 (5.100)

where k(x) is some intermediate scale. At the level of the action the effective energy
momentum cannot be disregarded.
Platania also investigated the backreaction. When we analyse the behaviour of a par-
ticle in spacetime we usually ignore its backreaction i.e. how the particle’s properties
affect spacetime (mass, charge) etc which then reacts back to the particle. She includes
the backreaction effects produced by the running of G via an iteration method (the
cutoff is constructed by kn+1(r), for its convergence the NGFP is essential) which she
also applies to black holes. The modification of the dynamics of the theory by quan-
tum fluctuations becomes clearer. The effect is self-sustaining since a small change in
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Figure 5.4: Hindmarsh & Saltas. An RG trajectory in the dimensionless couplings λ ´ g
plane in EH truncation that could describe our universe (blue) with ρ = 1, we see the usual
spiralling due to the complex critical exponents into the UV FP and we flow along to later times,
lower energies and lower curvature passing away from the GFP such that classical values can
be attained. The intersection of the phase curve with the de Sitter line (black) is the described
possibility of a de Sitter point, the intersection with the dashed (black) one is where we have
εV = 1 indicating the end of inflation. We also see that the inner UV de Sitter points are
protected by the outer ones such that we cannot reach them. meff is the effective mass of the
scalar field in the Jordan frame. With the identification k2 = ρR we immediately see that for
ρ ăă 1 HD curvature terms become important whereas for ρ ąą 1 those are negligible but
radiative corrections are introduced [71].

the running coupling G introduces a ripple effect which itself changes the running of
G. Such a treatment could be analysed in the inflation setting as well41.
Going back to its application to inflation Platania analyses a toy model of an effective
action from the RG improvement of EH that provides SR inflation solutions. Near the
UV FP scale invariance is also encoded in the nearly scale invariant scalar power spec-
trum, depending on the (universal) critical exponents. This kind of treatment should
be favoured since the FP itself shouldn’t been as universal (or even physical) quantity.
The density fluctuations can be interpreted as quantum gravity fluctuations in a pre-
inflation era when flowing towards the FP.
(a) evaluated on the sphere have been used to model inflation since they give (Eu-
clidean) de Sitter solutions (Falls, Litim, Nikolakopoulos & Rahmede (2018)).

5.6.2 Asymptotically Safe Starobinsky Inflation

As we have seen, Starobinsky’s model fits cosmological data very well. Other HD theo-
ries have been investigated as well. However, for R2, for example, the coefficient needs

41Note, simply if we calculate k2, in the HE energy regime gµν should be replaced by the ă gµν ą
fluctuation metric which itself depends on k. In Platania’s treatment the classical black hole singularity
is dynamically replaced by an de Sitter cone (2019)

117



to be very large in order for inflation to occur. There is no reasonable explanation for
that. It is a straight forward question to investigate those models in the asymptotic
safety scenario. We also know that including the Weyl squared term the R2 action can
be made renormalisable.
We analyse L „ R

16πG + R2

b
Ø R

16πG + 1
2Bφ

2 + V under the transformation ĝµν =

gµνe

b

16π
3

φ
mp whose potential we derived earlier. For „ B

16πG we know B = ´ 1
6m2

2
,b =

6Gm2
2. Under Euclidean setting and Gk,bk (Machado& Saueressig; Codello, Percacci

& Rahmede (2008)) we have the RG flow under

Γk =

ż

d4x
?
g

(
´

R

16πGk
+
R2

bk

)
(5.101)

Ĝ = Gk2 (5.102)

as b is already dimensionless. I will use Litim optimation and expand in the Planck
regime i.e. k „ mp. Hence, I can use the solution of M&S and CPR that proceed
by calculating the ERGE with the Wetterich equation, gauge fixing, Litim cutoff. The
EAA is evaluated over Euclidean 4-spheres (which intuitively is associated to infla-
tion=expansion). The β-functions are rather complicated, there is a GFP and two UV
FPs, one with a large b value and one with non-perturbative properties at (24π

17 , 0)
with a small b at HE (large B). For the Planck regime, b small, Ĝ small up to unity,
integrating the β-functions we have the runnings

Ĝ „
Ĝ0k

12

1 + 41
72πĜ0k 12

(5.103)

b „
b0

1 + 41
72πĜ0k 12

(5.104)

around the second NGFP with the dimensionless constant parameters Ĝ0,b0 and the
scaled k 1 = k

k0
. For k 1 Ñ ∞ the coupling of the R2 term vanishes (making B very

large) and Ĝ approaches a finite value as expected, Ĝ „ 5.51695 (note, the values of
teh dimensionless couplings don’t have a physical meaning). For k 1 Ñ 0, however, b
approaches a finite value, b0 and ĜÑ G0k

12 as expected. I choose the reference scale
to be of Planck order, k0 „ mp. As we have seen we need to match the results with the
physical scale (would need to observe it or do experiments e.g. from the CMB) to get
the constant parameters. We know that Ĝ0 „ 1 since kus ăă k0 and we are left with
b0 as scale for inflation where I also assume kinf ă k0 (we have seen that it is assumed
to be at GUT scale, so at least three orders below the Planck regime - relics shouldn’t
be able to form again). The important question is: What is the value of the cutoff scale
during inflation? The Hubble parameter sets a bound on k during inflation. We saw
b0 „ 2 ¨ 10´9 3.99 to agree with the CMB data. This result gives a tensor spectrum of
the order 10´12 and would explain the fact that we still haven’t observed primordial
gravitational waves, the best resolution measurements give a detection possibility of
„ 0.01+ which is clearly to high. In comparison, the EH truncation predicted a ten-
sor power spectrum of nine orders greater which might be detectable one day.42 The

42The number comes from the constraints for an accelerated expansion and sufficient e-foldings to
solve the cosmological problems. 5.4 evaluate N in terms of the curvature R and the couplings. For 60
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theory would also provide a graceful exit since for R2 term dominates at early times,
but after a sufficient number of e-folds the de Sitter solution has an instability and the
exponential expansion ends5.4.
With b0 we can then use the flow equations to extrapolate the coupling at a specific
scale, for example at b(k = mp). Using Codello et al.β-functions we get b(mp) „
1.7 ¨ 10´9 which only differs by less than 2% meaning that the treatment at the UV FP
and at the Planck scale indeed shows slow running.
If the quantum correction is taken into account the R2 term may modifie the Lan-
grangian at HE,Ñ„ αR2

2(1+β ln R

µ2 )
i.e. by∆S „

ş

d4x
α(µ)R2

2 whereα is a slow logarithmic

running (Demnel, Saueressig & Zanusso (2015)) which is comparable to 7.13.4.

5.6.3 Consistency Conditions

Before I continue with the next section I would like to emphasise the desired consis-
tency conditions for a new fundamental theory. It should include

• unitarity, U:U = 1

• no anomalies, failure of gauge symmetry on the full quantum level

• causality, A causes B or B causes A and information cannot be transferred faster
than light - no action at a distance

• locality, an object is only directly influenced by its neighbourhood and the large
scale behaviour is determined by the small scale

• Lorentz invariance (see before) and other symmetry requirements, note in QG
Lorentz invariance should be seen as a local (rather than a global) symmetry,
general covariance, gauge invariance...

which aren’t independent of each other and we may violate certain conditions. More-
over, what we are after is a theory that is

Condition for inflation-model independent

• unitary

• renormalisable

• physical and unique

Unitarity follows from the need of a well-defined notion of probability and logic,
there are no negative probabilities. The squared complex amplitudes give probabilities
that a certain state is given, P = u:fuf where uf is a final state vector. The total

e-folds from the UV de Sitter point to the end of inflation, ε = 1, (g, λ), (0.02, 0.27)Ñ (0.02, 022) they
find a value of Ps „ 0.067,Pt „ 0.052 i.e. of same order which clearly is not the case. Cai&Easson
(2011) analyse f(R) models and connect them to some Brans-Dicke type theories where EFT treatment
breaks down, with RG treatment, however, they find that the quantum fluctuations are of the same
order as the background.
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probability must add to unity and under a transformation under U the probability is
conserved from an initial state to final state.

P = u:fuf = (Uui)
:Uui = u

:

iU
:Uui = 1 (5.105)

where I assume that the states are normalised. In particle physics we identify U with
the scattering S-matrix. In fact, the need for a well-defined probability definition leads
to the constraints of a unitary S-matrix and a positive definite Hilbert space where the
Hamiltonian is Hermitean. The issue of Stelle’s fourth order gravity is that you either
have instability since the Hamiltonian is unbounded from below or you have states
with negative norm (Ñ non-unitary). The negative energy of the ghost must in fact
be traded for quantum states of positive energy but with a negative metric in the state
vector space (Stelle, 1977). If you don’t trade them the negative energy would allow
vacuum decay into ghosts and normal particles with positive energy which would lead
to an infinite phase space. We also have to deal with the possibility that the spin 2 field
couples to external matter forces. Independent of the mass of the ghost, classical GR’s
two dofs are added by further five dofs given by the ˘2,˘1, 0-helicity modes. Early
on Ostrogradsky realised that HD terms in the actions in classical mechanics (higher
than the second time derivative such as in 5.24 & a nondegenerate Lagrangian) gener-
ate instabilities at the non-linear level (1850)43. Ghosts from HD theories may violate
unitarity, but other nonphysical fields can be projected away and don’t violate unitar-
ity.
The gauge fixing breaks the classical gauge invariance, ’good’ ghosts 7.12.1 are intro-
duced to restore unitarity. We recover gauge invariance back at the quantum level
if we follow the ’recipe’ of gauge fixing and ghost introduction (it is then invariant

43Indeed, we don’t have any physical theories in CM that are described by terms like the third deriva-
tive wrt time.
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under the fermionic BRST transformation (1976) which Stelle also used in his gravity
treatment.
We want to have a physical theory that is uniquely defined, we should only need to
measure a finite number of independent parameters and no nonphysical fields should
arise.

Where Does the Ghost Come From?

It is a good exercise to actually prove that the new dof introduced by R2 and W2

(see below) are actually a scalar and spin 2 massive field. We will rewrite the higher
derivative theories in terms of a second order canonical theory where the scalar field
and the spin 2 field are coupled to gravity.
We learnt that Wigner classified the unitary irreducible representations by mass and
spin (say given by the operators M2,S2). I follow the Fierz and Pauli [53] and Whitt
[88] treatment and use formulae from 3.3.6. First, the condition for s = 244

M2
Ñ (B2

´M2)Sµν = 0 (5.106)

S2
Ñ B

µSµν = 0 ηµν = 0 (5.107)

for a symmetric Sµν tensor. That’s also how we can see that the ghost will contribute
to five dof. A symmetric rank 2 tensor has ten dof and we need to specify its value
and its derivative initially. Along with teh given conditions this reduces to 10´ 5 = 5
dofs.
First we introduce an auxiliary field which will reduce the higher derivative terms of
fourth to second order. We will couple that field to gravity.

Starting with the R2 term we should add a term of

´
1

6m2
0
(R´ 3m2

0c0)
2 (5.108)

with a dimensionless coupling c0, the action can then be rewritten

S =
1

2κ2

ż

d4x
?
´g

(
R+

R2

6m2
0
´

1
6m2

0

(
R´ 3m2

0c0

)2
)

=
1

2κ2

ż

d4x
?
´g

(
R(1 + c0)´

3
2
m2

0c
2
0

) (5.109)

which reduces to the Starobinsky action on shell, R = 3m2
0c0. Now we proceed by

a conformal transformation (as we did for the Starobinsky action), ĝµν = eln(1+c0),
which we call the field Ψ and its corresponding dimensionful field should be propor-
tional to Ψ „ Ψ?

G
. Assuming metricity of the transformed metric and also (for now)

44Derived by the equation of motion of the action, taking the divergence and tracing and substituting
back in. We linearise around flat space.
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constant field values the eom is then given by

S =
1

2κ2

ż

d4x
a

ˆ́g(R̂´
3
2
m2

0(1´ e
´Ψ)2

´
3
2
(∇̂Ψ)2) (5.110)

R̂µν ´
1
2
ĝµνR̂+

3
4

(
(∇̂Ψ)2

´ 2∇̂µΨ∇̂µΨ+m2
0ĝµν(1´ e

´ψ)
)
= 0 (5.111)

R̂ = Re´Ψ (5.112)

We see that the sign in front of the kinetic term in the action is negative as expected.
A positive mass squared of the scalar field gives a potential that diverges for ΨÑ ´∞
and saturates for +∞ with a global minimum at the origin which makes it a likely
candidate for inflation as we have already seen. We have introduced a new dof.
The same treatment is now applied to the Weyl squared termW2 using some results of
Stelle and Magnano (1978, 1990). We introduce an auxiliary field, a symmetric rank
2 tensor that should satisfy 5.106. First I rewrite the action in terms of R and Rµν,

S =
1

2κ2

ż

d4x
?
´g

(
R´

W2

2m2
2

)
=

1
2κ2

ż

d4x
?
´g

(
R+

R2

3m2
2
´
RµνR

µν

m2
2

)
(5.113)

If we define Tµν = 1
m2

2
(2Rµν ´ 1

2gµνR) we need Qµν =
m2

2
2 (Tµν ´ gµν(gρσT

ρσ)) in

order to rewrite the Lagrangian in analogy to the R2 contribution only.

S =
1

2κ2

ż

d4x
?
´g

(
R´ TµνQµν +

m2
2

4

(
TµνT

µν
´ (Tµνg

µν)2
))

(5.114)

which indeed gives the eom for Q. We aim to show that T satisfies 5.106 adding new
five dof to the already present two dof of the metric. We will see that the equations
are exactly the ones given by Fierz and Pauli with B Ñ ∇. Before calculating the
eom (which is basically the one I gave for the Starobinsky one) we should only get
the term proportional to m2

2 which is (Tµν ´ gµνT) with T = gµνT
µν. This term

indeed satisfies 5.106 as taking the divergence vanishes and the KGE is indeed given
by ∇µ∇νT 1 + 3

2m
2
2T giving T = 0 45. A quick look (we want to have it in the form

Rµν +
m2

2
4 (TµνT

µν ´ T 2)) gives us the transformation of the metric:

a

´ĝgµν =
?
´g

(
(gµν +

1
2
Tgµν ´ Tµν

)
(5.115)

This gives us a transformed T̂µν and the metric should be substituted by

gµν = (det ...)´
1
2

((
1 +

1
2
T̂

)
δρµ ´ T̂

ρ
µ

)
ĝρν (5.116)

where ... is the nonzero determinant of the term above. Finally, we can write the
action that clearly shows the problem of the new spin 2 dof:

S =
1

2κ2

ż

d4x
a

´ĝ

(
R̂´ ĝµνΓσµ[ρΓ

ρ
ν]σ +

m2
2

4
(det ...)´

1
2 (T̂µνT̂

µν
´ T 2)

)
(5.117)

Γσµν =
1
2
(g´1)σρ

(
∇̂(µgν)ρ ´ ∇̂σgµν

)
(5.118)

45T 1 = m2
2(Tµν ´ gµνT) = Rρ(µ(Tρν) ´

1
2gρν)T) ´

1
2gµνR

ρσ(Tρσ ´
1
2gρσT) +∇µ∇νT +∇2Tµν +

gµν∇ρ∇σTρσ ´ gµν∇2T ´∇(µ∇ρTρν)
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Again det ‰ 0 (for the R2 we had c0 ą ´1). Indeed, the spin conditions are satisfied.
The kinetic term is „ ΓΓ and if we expand around T̂µν = 0 (as Fierz-Pauli treatment,
for flat space we get Stelle’s result) we get the same result with B Ñ ∇ and indeed
the ’wrong’ sign,L „ +

m2
2

4 (T̂µν ˆTµν´T 2)(1+ T̂), a massive spin 2 field (tachyonic for
m2 ă 0 and normal for m2 ą 0).46

Combining the results the particle spectrum can be nicely seen in the Lagrangian. We
simplify T̂µν „ ĝµνT̂

L „ ReΨ ´
3m2

0

2
(eΨ ´ 1)2

´QµνT
µν +

m2
2

4
(TµνT

µν
´ T 2) (5.119)

with the scalar field Ψ = log(1 + c0). I will come back to this when calculating the
mass of the ghost. Thus, we have a total of 5+2+1 dof. Stelle decomposed a symmet-
ric tensor and used the TT decomposition to separate the action into different masses
and helicities where clearly the spin 2 field appeared with a relative sign to the other
fields.
To put a bound on the masses it was emphasised that astronomical measurements
are rather unhelpful. The correction is of order „ e´mr 5.35. Taking, for example,
the Mercury precision of „ 10´9 with a radius of 5 ¨ 109m this gives a lower bound
of 4 ¨ 10´11cm. The application to black holes ([78] and proceeding works) give a
5-parameter family which can be split into 1 (usual Schwarzschild) + 2 + 2 (one of
which gives at suitable boundary conditions asymptotic flatness). The sign of the cou-
pling of the scalar field has caused some confusion with either a real mass growing as
energy increases (Avramidi & Barvinsky, 198547) or negative/complex which leads to
mathematical consistency, but is phenomenologically rather difficult due to its tachy-
onic instability. In [78] it was already emphasised that the masses are real for positive
f2

0, f2
2 ą 0 for m2

0 „ f2
0 as otherwise we would have oscillatory 1

r
terms. Note also

that HD applied to low-mass Schwarzschild black holes give rise to Gregory-Laflamme

instability for M ěMmax with Mmax „
m2
p

m2
(Stelle, e.g. 2017).

5.6.4 Further Higher Derivative AS Inflation

We have already encountered the Starobinsky inflation and Stelle’s gravity as HD the-
ories. So far a NGFP has been calculated in a large number of different truncations.
Interestingly, the GFP of EH doesn’t generalise to an additional R2 term, whereas the
NGFP does. In fact, it is given by almost the same properties.
Let us recall the fourth order Lagrangian,

S =
1

2κ2

ż

d4x
?
´g(R+ αR2 + βRµνR

µν + γRµνρσµνρσ) (5.120)

In this form α is dimensionful, β and γ are dimensionless and the action can be
reduced to Einstein Hilbert with Λ = 0, γ = 2. We use the fact that in four di-
mensions the Gauss-Bonnet term vanishes and rewrite the action in terms of R2 and

46A rigorous should also investigate the case if we do not expand around 0 i.e. whether another
vacuum state wouldn’t produce a ghost.

47The Euclidean action was found to be AF in all essential couplings for positivity/negativity of the
couplings. Later on it was shown that in the Lorentzian setting we need the R2 term of different sign
in order to exclude tachyonic instability.
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W2 = Cµνρσµνρσ = Rµνρσµνρσ´ 2Rµνµν+
R2

3 only. Let us also rewrite it such that Starobinsky’s
inflation and the spin 2 ghost are encapturated.

S =
1

2κ2

ż

d4x
?
´g

(
R+

R2

6m2
0
´
W2

2m2
2

)
(5.121)

The masses are given by the original (mo)´2 = 6α + 2β + 2γ, (m2)
´2 = ´β ´ 4γ

where Stelle showed that the R2 term introduces a new scalar field with massm0 and
W2 introduces a massive spin 2 ghost of mass m2 (note that in Stelle’s treatment we
first proved that the coefficient in front of R is indeed the EH one),m2 ą 0 introduces
non-tachyonic fields, m2 ă 0 tachyonic fields. In recent AS paper (Ohta et al.) we
again find the higher derivative action

u0 + u1R´
ω

3λ
R2 +

1
2λ
W2 +

θ

λ
E (5.122)

where it turns out that the standard EH action gives u1 = ´ 1
16πG and for Λ ‰ 0 u0 =

Λ
8πG , E is the Gauss Bonnet term that vanishes in 4d E = R2´4Rµνµν+R

µνρσ
µνρσ. Following

the FRGE the authors find an NGFP. Interestingly, the inclusion of the coupling of the
Weyl term stabilises the coefficients at the fixed point. Taking the RG flow into account
the mass of the additional fields is not constant, m2

2 = λ
16πG grows as k2, we should

evaluate the mass at the point p2 „ k2. Depending on the sign of λ at the FP the
behaviour is different. For k2 = ´m2(k2)

1. λ˚ ą 0 the effective mass diverges as k Ñ ∞ meaning that it decouples in the
UV

2. λ˚ ă 0 the mass behaves like m2(k2) „ ck2 depending on the product of the
couplings at the fixed point, c = ´gλ|˚

This would indicate a strong coupling of the ghost at low energies.
As Litim et al. and Niedermaier put forward, former with a bootstrap strategy based
on the hypothesis that canonical power counting should remain a valid principle at
and near the FP48. Recent work [44] includes the effective actions of Γk „ Fk(X) +
RZk(X),X = αR2 + βRµνµν + γRαβγδαβγδ with F,Z being powers of X where (α,β,γ) =
(0, 0, 1) is put forward as a good action to study inflation on spheres. Here it also
seems that a cubic term in curvature becomes relevant changing the dimension of the
UV critical surface (recall, the number of relevant directions of the FP which should
be finite to satisfy predictivity) which until now stayed the same as adding HD terms
does not add more relevant directions.
In previous works the Einstein Hilbert truncation was added by R2 [36], R2 + Riem2

(e.g. Ohta, Percacci, 2014), R2 + Ricci2 + Riem2 (Falls, Ohta, Percacci, 2020), then
generic polynomials of f(R) (Falls, Litim, Schröder, 2019), with the Goroff Sagnotti
counterterm (Rechenberger, Saueressig 2012) 5.39... All of which found a FP and
some physical interpretation. For further truncations see 5.1.

48This ’can be verified a posteriori’ since the new quantum scaling dimension by adding a new oper-
ator of higher mass dimension should be more irrelevant than the one given at the order prior, but the
other scaling dimensions are only slightly shifted [34].
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The critical exponents can be real in some HD theories whereas EH gives complex
conjugate pairs that cause the spiralling into the NGFP. It is not clear whether this is
due to the approximations or whether this has some importance.
The results that were obtained in the past years should be analysed which truncations
might explain inflation.

5.6.5 Ghosts Once More

The mass of the ghost is dependent on the couplings and is also given by the pole49

1
m2

(
1
k2
´

1
k2 ˘m2

)
(5.123)

where the sign in the propagator is dependent on the sign of the coupling of the Weyl
squared term, for a negative coupling we have a normal ghost, for a positive one we
have a tachyonic one. In fact, the 1

k4 dependence makes the theory renormalisable.
One might also wonder when the issue of ghosts ’physically’ becomes a real problem.
Following simple kinematics in the rest frame (it still is a relativistic theory) 50 the
production of a scalar ghost particle requires at least (assuming the ghost at rest so
(~p,E) = (~0,Eg = ´mg) |~p| „

mg

2 if we assume a heavy ghost with mg ąą mi,mf
wrt to the initial (~p,Ei) and final (´~p,Ef) particles masses.

∣∣p∣∣2 =
1

2mg2mg
(m2

g ´ (mi +mf)
2(mg ´ (mi ´mf)

2) „
m2
g

4
´

1
2
(m2

i +m
2
f) + ...

(5.124)
as the ghost mass dominates over the initial and final particle, the second term can
be ignored. Calculations show that the ghost mass is Super-Planckian. Stelle already
concluded in 1977 that HD theories might be used as effective theories in the quest for
a quantum theory of gravity since the underlying ’undesired’ effects become apparent
at scales near/below the Planck scale. Using our previous results we know that the
mass in Stelle’s theory in 5.122 form is given by

m2
0 =

λ

32πGω
, m2

2 =
λ

16πG
(5.125)

In [77] they argue to take the mass at the FP where we know how the couplings
behave. A more rigorous treatment would use the RG equations to calculate the mass
away from the FP. In the RG approach we need to find a reference scale µ0, here

1
16πG

=
µ2

0

gN(µ0)
= m2

p Ø µ0 =
a

gN(µ0)mp,mp =
?

16πG (5.126)

49After linearising the theory one can add a field s.t.
ş

d4x(´ 1
2BµφB

µφ+ 1
2λBµφ�B

µφ+ Jφ where λ

is the Weyl coupling and then solve forφ =
J
λ

k2(k2+ 1
λ
)
= J
k2 ´

J
k2+ 1

λ

using partial fractions in momentum

space, massless graviton +massive spin 2 field. Tomboulis (1977), Salam (1978) and others suggested
that unitarity can be restored if quantum corrections are taken into account. Those could transform
the real (nonphysical) into a complex conjugate pair of poles. A lot of research has been dedicated to
the resolution of ghosts in HD theories.

50Stelle, talk during ’Quantum Spacetime and the Renormalization Group’ 10/2020.

125



Substituting this into the formula for the mass of the ghost we will see that the scale
at which ghosts are produced is above the Planck scale, see also 7.13.5.
Hence, the theories that are renormalisable but contain massive ghosts should remain
valid for very HE until ghost are produced. Nonetheless, we cannot simply ignore
the issue as we would like to have a theory of quantum gravity that is valid at all en-
ergy scales. It has also been proposed that quantum corrections might make unitarity
possible via destabilising the massive s=2 ghost (Donoghue, Menezes, 2019).

5.6.6 Finite Action

Barrow and Tipler (1988) [81] claimed that as in quantum mechanics physical solu-
tions are described by a finite (Euclidean) action so should the universe’s evolution
correspond to a finite total action51. Thus, infinities in the ’path integral’ of the uni-
verse should sort out nonphysical models or put constraints on the ones we are looking
for. They assume spatial finite volume that approaches 0 as t Ñ 0 and the time inte-
gral at a fixed arbitrary time back to t Ñ 0 has to be finite. With that they actually
give very powerful constraints on the properties and topology of the universe such as

• the universe is closed

• initial and final singularities exist, the universe has a finite lifetime

• there are no bouncing or indefinite cyclic universes

• no HD theories are applicable (at least very harsh constraint on quadratic terms)

• certain constraints on possible matter

A recent follow-up added the exclusion of compactifications of flat and open universes,
constraints on inhomogeneties and isotropies and further constraints on HD actions.
With that in mind, Stelle and Lehners [77] analysed the effect of 5.122 (λ Ñ σ and
adding Λ) in 4d with the help of Niedermaier’s Euclidean β-functions at 1-loop order
where the scale-dependent (µ) couplings are given by

gN = µ2κ2, κ2 = 16πG, Λ = λµ4 (5.127)

such that gN, λ are dimensionless (σ and ω are dimensionless by definition). From
before we know that the theory is perturbatively renormalisable and adding AS makes
it possible to trust the theory at high energies such as near the Big Bang. Knowing the
β-functions and the FP we can calculate the mass of the new scalar and ghost fields.52

They fluctuate around a background for which the kinetic term is „ (B2ĥ)2 for a
rescaling of

?
lnµh = ĥ.

m2
0 „

µ2

lnµ
m2

2 „
µ2

lnµ
(5.129)

51S = SEH + Smatter + boundary terms each of which should be finite on its own.
52Niedermeier (2010):

µ
d

dµ
c = fc(gN, λ,σ,ω), c = gN, λ µ

d

dµ
σ „ σ2 µ

d

dµ
ω = fω(σ,ω) (5.128)

giving a FP for finite positive gN˚, λ˚,ω˚ = ´0.0228,σ˚ = 0.
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Note that the scalar is tachyonic for ω˚ ă 0. The FP is dependent on the scheme
chosen (whereas the critical exponents are believed to be universal). Repeating the
same calculation with Ohta&Percacci’s HD treatment (2014) (which is done in arbi-
trary dimension and on general backgrounds) and Codello&Percacci (2006) the mass
behaviour is the one given by S&L. Precisely, we know from the RG treatment of Nie-
dermaier and Stelle’s mass formula

µ „ |~p| „
1
2
m2(µ) (5.130)

µ
dσ

µ.
= ´cσ2, c „ 0.08 (5.131)

m2
2 =

µ2σ

gN
„

µ2

cg˚ ln µ
µ0

(5.132)

substituting the second into the third equation. Since we identify the reference scale
with

?
gNmp and the flow changes only slowly near the FP, we have gN(µ0) „ gN˚ „

0.42.

Ø m2
2 „ (2µ)2

„ µ2
„

µ2

cgN˚ ln µ
µ0

Ñ µ „ µ0e
1

4cgN˚ „ 0.648e7.44mp „ 1.1 ¨ 103mp

(5.133)
Hence, the theory should be valid up to very high Super-Planckian scales. An addi-
tional thought on that can be found in the appendix, 7.13.5.
They further analysed possible anisotropies and inhomogeneities in the early universe.
For former they rewrite the action in terms of the BianchiIX metric53 and investigate
how the HD terms change from the expected evolution of the universe. Other than
speeding up the crunch there is no significant change. The only way to get a finite
action is to choose the anisotropy parameters β˘ Ñ 0 as t Ñ 0 (li9eβ˘ where a is
the spatial volume and β the shape of the spatial slicings) forcing the anisotropies to
remain small during the expansion.
Next, they rewrite the action in terms of the LTB metric where the scale factor is
replaced by A = A(t, r) and an inhomogeneity measure in terms of F(r) is intro-
duced (ds2 = ´dt2 + A 12

F2 dr
2 + A2(dθ2 + sin2θdφ2). Whereas EH doesn’t give any

constraints on when the integral would diverge as t Ñ 0, the HD theory gives the
constraint that only a homogeneous universe is allowed since F(r) Ñ 1 in order for
the action to remain finite. Furthermore the scale factor undergoes accelerated ex-
pansion, A „ ts, s ą 1 which is the definition of inflation. Thus, the R2 and Weyl2

terms are necessary in order for the selection principle to set in to allow a primor-
dial homogeneous and isotropic universe that undergoes accelerated expansion in the
early phase. Their findings contribute to Penrose’s Weyl curvature hypothesis with a
homogeneous and isotropic universe with low Weyl curvature (=low entropy) in the
beginning which causes the second law of thermodynamics to arise.
It would be interesting to apply the same strategy to other HD theories and investigate
which curvature invariants are necessary in order to put selection constraints on the
universe (i.e. which truncations make the integral divergent) and also analyse the
setting with other metrics.

53This is the metric they also used to analyse black holes in HD gravity, ds2
IX = ´dt2 +

ř

m( lm2 )2σ2
m

with σ being different forms on the 3-sphere. The metric gives typical oscillatory BKL behaviour.
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5.6.7 Scale Invariance

Recall that the homogeneity and isotropy on large scales shows a scale invariant be-
haviour (galaxies cluster in galaxy clusters with large voids in between, primordial
fluctuations cause the LSS today etc). The critical scaling around the NGFP depends
on the effective Lagrangian (i.e its (modified) gravity terms, matter content etc.) such
that for a certain power spectrum, in our case a (nearly) scale invariant one, for exam-
ple, we have constraints to put on the critical exponents. The FP itself depends on the
gauge fixing and the cutoff but still shows some kind of general properties (e.g. g˚, λ˚
both in quadrant I), the critical exponents are assumed to be universal. If we want
to follow this idea we should calculate the FP and critical exponents for all couplings
and then rewrite the running couplings in terms of those, e.g. for EH

gk = g˚ + αf11

(
k

k0

)´θ1

+ βf12

(
k

k0

)´θ2

(5.134)

λk = λ˚ + γf21

(
k

k0

)´θ1

+ δf22

(
k

k0

)´θ2

(5.135)

where we linearised the β-functions around the FP, f are the corresponding eigenfunc-
tions and the ´θ the eigenvalues of the stability matrix. The parameters are given by
the identification and RG improvement (we select a trajectory by identifying a scale
k = x). Adding HD terms we do the same and in the end we analyse the RG im-
provement under which conditions inflation is possible and under which it produces
the power spectrum we measure. It is tempting to associate the scale symmetry of the
fluctuations with the FP in the UV and we have indeed seen that although inflation
might be well below the Planck scale that the running near the FP and Planck regime
is rather slow.
At the FP we have exact scale symmetry. An interesting thought has been put forward
by Wetterich that scale invariance as dimensionless ratio of scales a priori doesn’t tell
us what to favour. Precisely, we know that the universe expands by measuring (indi-
rectly) the velocity and distance of galaxies. The ratio of, say an elementary particle,
and the distance to galaxies, dgalaxies

dparticle
stays the same under the expansion of the uni-

verse and the shrinking of the particles’ size. The frequency emitted from a particle
is proportional to its mass, the wavelength proportional to its size. We could sim-
ply follow standard cosmology and alternatively describe a universe with shrinking
particles/exponentially growing mass (Wetterich, 2013). This leads to the questions
whether an alternative description of observables is indeed viable and what the phys-
ical meaning of the dimensionless couplings or the FP is.
There is a nice proof to show that the RG flow produces a nearly scale invariant power
spectrum (Mottola et al. (1996)). We know that the effective graviton propagator
goes like k´4 at the background level i.e. we have a two-point correlator log(x´ y)2.
The curvature δR is proportional to B2h which means ă δRxδRy ą is proportional to
|x´ y|

´4. We also know that the Einstein equations gives us a curvature δR propor-
tional to δρ and correlation function 3.99 ζ(x) =ă δ(x)δ(0) ą is then proportional to
1
x4 If we Fourier transform this we get |δk|

2
9 |k| i.e. it is completely scale invariant!

Here we see that is is necessary to not evaluate directly at the NGFP, but a bit away
such that we only get nearly scale invariance.
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5.6.8 Entropy Production

We have seen that along the horizon and flatness problem, the formation of LSS and
the issue of the enormous entropy today should have been solved by inflation. Bo-
nanno and Reuter investigated the entropy production during inflation. The adiabatic
inflationary expansion in the early universe should be described near the NGFP, they
analyse a special class of RG trajectories (type IIIa, Reuter et al.) in the EH truncation
with a long classical regime and small positive cosmological constant in the IR. λ de-
creases as the universe expands. This decrease ’pumps’ energy into the matter dofs,
similar to Platania’s backreaction. Entropy is then naturally produced by quantum
gravity effects (as we flow from the UV to the IR). A positive cosmological constant
can indeed cause accelerated expansion, but as we have seen earlier it is not necessar-
ily assumed that today’s expansion is of the same nature as inflation was. Following
the IIIa trajectory there is a phase of inflation caused by Λ which then dynamically
ends because of the RG flow which drives Λ to near zero. They RG improve the Ein-
stein equations and use the Hubble parameter as cutoff, G and Λ are time-dependent
which changes the usual entropy treatment. They then calculate the entropy produc-
tion rate for different matter types and conclude with interesting results including
almost adiabatic expansion given from the RG improved equations. Near the singu-
larity the entropy takes an integration constant Sc which is assumed to be zero i.e. all
the entropy produced comes ONLY from the RG running. For further treatment see
[63].

5.6.9 Mathematical Tools

Before I conclude I want to mention that the AS and within the RG treatment has also
successfully improved the mathematical tools used in a wide range of physics, both
perturbative and non-perturbative techniques. Just to give one example, the trace of
the Wetterich equation can either be calculated by summing over the eigenvalues of
the background („ spectral sums, e.g. Benedetti (2012)) or by using heat-kernel tech-
niques. Heat kernel coefficients arise during the computation of differential operator
traces such as in the Wetterich equation and are also sometimes needed to separate
the β-functions.54 Kluth and Litim [45] derived the heat coefficients for arbitrary di-
mension on a sphere for Laplacians that act on scalars, vectors and tensors. In GR we
would like to evaluate truncations on fully symmetric spaces and at some point also
general manifolds. We don’t know the spectral sums of a general manifold.

5.7 Some Remarks

It is a not entirely clear how the renormalisation scale and physical scale are related,
but AS started a very promising attempt. How exactly shall we evolve the universe
away from the FP? How can we describe the transition from UV (quantum) to IR

54When we have successfully calculated Γ (2) and found a regulator Rk this can be written as a matrix-

valued function, f(∇2). Its trace is given by Tr
 

f(´∇2)
(

=
ş∞

0 dtf̂(t)Tr
!

et∇
2
)

which can then be

rewritten in terms of heat coefficients (Kluth, 2020).
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(classical) in a clearer way? First of all we need to assume that the NGFP does indeed
always exists. A large number of different truncations with different gauge and cutoff
choices as well as different RG improvement levels and identification choices have so
far all found a viable NGFP, but we still lack a general proof55, ideally for a generic
cutoff.
We have encountered different RG identification and improvement possibilities. Fur-
ther explorations where we have to make sure that symmetry such as general covari-
ance is satisfied and the physical scale will be matched with some observational data.
The choice does effect the predictivity, on the level of solutions it is the simplest calcu-
lation, but the improvement in the eoms or even in the action enhances predictivity.
Interestingly, quadratic gravity is perturbatively renormalisable, but non-unitarity. More-
over, the R2 and Weyl 2 terms do affect the dynamics of the evolution and play a major
role in the early universe if one considers the finite action approach or the need for
low entropy and Penrose’s equivalence of Weyl curvature and gravitational entropy. R2

curvature modifies EH to a Planck era inflation. Thus, one should continue to investi-
gate the behaviour of HD theories. The RG techniques have proven to be an effective
mathematical tool. The early universe and inflation are in the HE regime such that
the calculation of UV and the analysis of the flow near the FP can give insight in the
behaviour of the the theory that would otherwise break down.
Nonetheless, one should continue to match the UV and IR behaviour. Inflation is a
good example how the quantum/microscopic can influence the macroscopic (primor-
dial fluctuations, density perturbations, LSS...). The R2 term is the only HD term that
doesn’t cause nonphysical results and the Starobinsky model fits Planck data which
both suggests a further investigation. It is convincing to analyse truncations beyond
EH since it provides results that might fit observational data better. It is also important
to further analyse the Starobinsky model in AS and refine the model (start with R2 or
should it arise as quantum correction, what are the effects of the RG improvement and
identification choices...?).
We should analyse which curvature terms drive inflation i.e. accelerated expansion,
which terms provide a solution to a graceful exit, which ones render gravity unitary
perturbatively/non-perturbatively renormalisable i.e. which terms provide a NGFP,
further which terms would provide the further evolution (radiation-matter-dark en-
ergy domination) as a dynamical flow from the UV to the IR. The f(R) theories seem
promising. Theories from classical and modified GR from the past decades should be
analysed with the RG. Can all inflation models be realised?
Can we classify HD theories into the ones that make inflation possible? I showed
that inflation takes place at HE, but it isn’t assumed that it took place at p and surely
not above, is the treatment near the FP really viable? Near the FP we have slow log
type behaviour, but one should carefully investigate which HD terms give a FP regime
that we can trust for inflation. The choice of cutoff identification doesn’t seem to
produce significantly different results, whereas the level of RG improvement choice
does matter. Still, one should further enlarge the choices, especially the ones that
are dependent on curvature since they are given by the intrinsic geometry. I haven’t

55We can only prove its existence for all possible couplings in the large 1
N

approximation where N
is the number of matter fields coupled to the spacetime metric which is actually quite a viable approx-
imation since we only have one graviton and definitely ě 17 matter fields.
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come across a treatment that uses the fourth power of the Riemann or Weyl tensor.
Both are important in the description of the gravitational field, tidal forces and a pro-
posed quantification of gravitational entropy. Moreover curvature invariants such as
CµναβC

µναβ are by definition accompanied by dimensionless coefficients56 (if we add
to EH the basic truncation ansatz) which already suggests that those should give vi-
able cutoffs. Furthermore, cutoffs like „ R are rather daunting since it vanishes for
the vacuum solution of the Einstein equations.
The disadvantage of the inclusion of the Weyl tensor is the loss of unitarity. However,
we still don’t have a proper notion of unitarity in the non-perturbative treatment so
we shouldn’t neglect terms that seem to lead to the break down of the theory. Sugges-
tions are made that the problem of ghosts can be eliminated by quantum corrections
(Donoghue et al.). In the RG improvement we are left with parameters that we need
to measure. For the R2 term which is already connected to a certain inflation model
we can finds its coupling values at the scale of inflation with the help of cosmic data.
For other terms such as the Weyl squared term this is rather difficult since we do not
know how to identify (or rather) measure those terms. An explicit reconstruction with
the RG equations might improve the bounds. Deeper investigations are needed. We
should also be careful when counting the number of dofs. At first glance it isn’t obvious
that the R2 term introduces a scalar field into the theory. Are those instabilities true
physical or rather artefacts due to the approximations we used? Lastly, we haven’t
covered ’direct’ matter-gravity models which make the treatment more complicated
but are obviously necessary if we analyse the universe. Especially, if we want to inves-
tigate a possible phase of reheating we need to introduce matter fields.
The quest for a theory of quantum gravity, a consistent theory of inflation and the de-
velopment of mathematical tools and frameworks such as asymptotic safety go hand
in hand.
The running of the cosmological constant might give a natural explanation for its low
value today (we are simply on that trajectory) and might have even driven inflation
in the early universe (recall our treatment of dark energy vs inflation earlier 3.7).
Finally, the notion of observables in QG is difficult. In fact, in classical GR the nature
of a ’physical’ spacetime point is lost by diffeomorphism invariance. There are no local
observables, but only global ones where we actually should integrate over all space-
time.
When we analyse a theory in the AS scenario we should be able to answer the following
questions:

1. does a UV FP exist? (if not we should stop working on that theory)

2. what does the running and the values of the couplings tell us about

• the possibility of inflation/how ’much’ inflation is produced?

• the quantum fluctuations during inflation?

• the further evolution towards lower momenta? Does a graceful exit exist?

56Similar special treatment goes to the R2 term which in 4 dimensions is the only power that gives a
dimensionless coefficient,
sim

ş

d4xBR
2

G
, ´4 + 2´ (´2) = 0.
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3. does the theory produce the right IR behaviour

4. within a model, how does the gauge and cutoff choices change the RG flow
behaviour?

5. within a model, how do the identification and RG improvement change the re-
sults?

6. which observables can be calculated? (ns, r...

7. how does the result differs from the classical treatment? Are there new possible
observables?
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Chapter 6

Conclusion

6.1 Outlook

Inflation as accelerated expansion along with its shrinking Hubble sphere does solve
the problems such as the horizon, monopole and flatness problem. It provides an an-
swer for the LSS and the observations we find in the CMB today. However, inflation
is nowadays a class of many different models. It is difficult to evaluate it as a whole.
We have seen that the slow-roll models introduce an unknown scalar field and suffer
from fine-tuning themselves. The chaotic model is less constrained, but gives rise to
eternal inflation and a multiverse scenario which takes away predictivity, testability
and the notion of probability.
Observations as done by the Planck satellites favour the Starobinsky model which is
a modification of Einstein’s gravity by adding an additional R2 curvature term which
then introduces a further dof in form of a massive scalar field. In order for inflation
to occur the coefficient in front of the term should be rather large. We have discussed
other alternative theories such as Penrose’s Weyl Curvature Hypothesis and shown that
inflation is not the only theory that can give an explanation for the so-called cosmo-
logical problems some of which predict a bouncing or cyclic universe which also give
other predictions than inflation.
However, the framework of inflation is the only successful theory so far that solves
many different problems all at once and made predictions that were validated with
rather high precision. Nonetheless, we are still missing the detection of primordial
gravitational waves in form of B-modes which would give a further constraint on in-
flation models. Inflation provides us with an idea of mechanism such as a repulsive
form of gravity (false vacuum, high potential energy, . . . ), but not with a detailed
theory of physics that could predict many details about the process itself such as the
origin of an ad-hoc introduced scalar field of unknown nature, the energy scale during
inflation or the reheating temperature at the end of inflation. Hawking et al. started
treating inflation on the ’global’ scale and already introduced the need for a theory of
quantum gravity.
The high energies at which inflation is assumed to take place as well as the interface
of quantum (microscale) and cosmology (macroscale) suggest a simultaneous quest.
Moreover, QFTs and GR both suffer from problems within such that the standard the-
ory of inflation which is embedded in both, cannot be safe.
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GR is perturbatively non-renormalisable which is solved by asymptotic safety’s claim
of a non-interacting fixed point in the UV. The issue of the dimensionality of Newton’s
constant is tackled by setting it on the run. We have indeed seen that with the help
of the renormalisation group flow a fixed point has been found in a large number of
truncations, starting from Einstein-Hilbert (G and Λ) up to higher derivative theories
such as Stelle’s perturbatively renormalisable quadratic gravity and even to a consis-
tent analysis of HD terms. The proposed theories have successfully found a FP that
controls scaling at HE and no divergences occur, gravity as quantum theory is located
in a UV critical hypersurface. AS’ power lies in its predictivity and natural matching to
the IR regime. Along with the RG identification and improvement on different levels
and with the help of various approximation methods inflation has been successfully
modelled near/at the fixed point regime by encoding QG effects near the NGFP in
the effective Lagrangian or equation of motions. The effective action interpolates in a
smooth way between the UV (Planck era inflation) and the IR (late time acceleration)
and inflation can naturally arise from the RG flow only (with a possible connection
between inflation and dark energy).
This gives a promising suggestion to further introduce different and larger truncations,
regulator, cutoff and gauge choices as well as to test the same model under different
RG improvement and identification choices.
Both quests should drive each other in a way that improves the analysis of inflation’s
behaviour at high energies and get more predictions with the help of AS. Similarly,
we can use inflation to break ahead towards the QG regime at the FP where the fun-
damental nature of spacetime might be encoded. Nonetheless, limitations of the RG
improvement and FRGE should be critically analysed, perhaps with validations from
and cross-checkings with techniques from AS, but also other perhaps complimentary
(non-)perturbative sectors such as methods from statistical physics, GR in the viel-
bein formalism, LQG (which implement a notion of quantum (discrete) geometry or
the coarse graining in spin foams ) or random lattice techniques (which give a notion
of background independence). We have seen that tests and simulations in numeri-
cal relativity or techniques from complex analysis were further improved to solve the
problems of inflation and initial conditions. Investigations of theories from modified
gravity can provide further toy models and truncations. We have also seen that AS
goes beyond an EFT approach to quantum gravity since it can give predictions of the
Planck scale and beyond and it provides a better predictivity which is both necessary
for a deeper analysis of inflation.
Some of the aforementioned points along with the emphasis of the issue on unitarity,
the physical meaning of the running, the importance of background effects and other
problems such as the notion of observables are also being discussed in [1]. A proper
notion of unitarity in the non-perturbative regime hasn’t been found and the issue of
ghosts seem to rule out HD terms. Hence, we shouldn’t rule out any (diffeomorphism
invariant) operators per se.
An important notion should be given to the Weyl tensor (squared), one of the terms
that would naturally come with a dimensionless coupling since we have seen that it
can renormalise a theory, stabilise effects and is a measure for tidal distortion and
perhaps for gravitational entropy. Truncations in the Weyl term, but also a cutoff
identification of the fourth power of the Weyl tensor ((CµναβCµναβ)

1
4 ) seem like a
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good continuation to previous and ongoing work. Further, should the terms that may
describe inflation be ad-hoc given in a finite truncation or arise from other terms from
the RG improved effective Lagrangian? The measure problem has attracted a wide
range of possible cutoffs that give different results. A treatment of eternal inflation, a
possible multiverse along with the issue of probability and predictivity (which lies in
the heart of AS) need to be evaluated in the AS scenario.
Both, AS and inflation, should give predictions for parameters or effects we can mea-
sure. How much /less fine-tuning in contrast to alternative theories is needed in AS
is a viable question.
Further treatments such as some kind of backreaction effect or a self-sustaining RG
improvement and ’selection principles’ such as the finite action principle or the no-
boundary proposal have given promising results and should be applied to future cases.

Inflation might be right, but it is not the whole picture – just as Newton and Einstein
were right when they treated their theories on a certain scale. Today we cannot answer
the question Whether inflation can be made safe.

6.2 A Summary of Important Questions

I am looking forward to continue evaluating and maybe answering all those fascinating
issues during my PhD.
A list of questions is attached (see also the end of 5), aside of the the issue of HD
non-unitarity and the [1] critique within the AS program:

• Have we introduced the right classification of inflation models?

• How can we define a better notion of fine-tuning?

• Can we embed all inflation models in AS? Which ones differ the most from their
’classical’ treatment?

• What is the cutoff during inflation?

• Are their new possible observations or predictions due to the AS embedding?

• What are typical observables during inflation/in QG?

• Which terms shall be exactly added such that gravity behaves well at those early
times and give inflationary behaviour? Which truncations shouldn’t be chosen?

• Which higher order curvature interactions describe phenomena such as infla-
tion?

• Is it possible that inflation emerges as a purely (quantum)gravitational phe-
nomenon?

• What is the energy scale at inflation?

• What other predictions does AS give in specific (and Planck favoured models)
e.g. normal Starobinsky and R2 RG improved?
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• How can we extract all the relevant information encoded in the running of G or
other couplings that enter the theory?

• Does AS give a notion of probability? What is the eternal inflation setting in AS?

• What is the importance of the C2 term (and HO), what is its effect on cosmology
measurements?

Outline and Review

QFT&PP GR&Cosmology

AS

Inflation

QG

RGRG
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Chapter 7

Appendix

7.1 A Brief History of the Universe

In order to have a basic overview over the universe’s evolution and to bring inflation
into temporal context a short overview1. Standard hot Big Bang theory predicts an
explosive beginning of the universe of an initial singularity of infinite temperature and
density. It follows an adiabatic expansion that makes the formation of matter possible.
Particle physics and thermodynamics and standard cosmology can describe (most) of
the universe’s further evolution. Questioning what lies beyond the Planck time cannot
be asked. As it is shown in this thesis it is not entirely known when exactly inflation
takes place, at what energy scale or temperature (model dependent). I define the Big
Bang as the theory that is well tested and proven such that inflation would then take
place prior to the Big Bang.

7.2 Scale Overview

To get an overview of the scales we are talking about I list the values of the Planck
scales.
The Planck mass is given by dimensional analysis or equating the Compton wavelength
with the Schwarzschild radius.

mp =

c

 hc

G
„ 2.2 ¨ 10´5g (7.1)

This is about the mass of a grain of sand!
Unification is expected to take place at the Planck energy

Ep = mpc
2 =

c

 hc5

G
„ 1019GeV „ 1.96 ¨ 109J „ 1019GeV (7.2)

This rest energy is about the kinetic energy of an airplane. Testings at the LHC are
at maximum „ 14TeV „ 1.6 ¨ 10´7J, so 16 orders below where we might be able to

1Brandenberger ’Inflationary cosmology: progress and problems’, J. A. Peacock ’Cosmological
Physics’
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Energy (GeV) Time (s) Temperature (K) relics
1019 ´∞ 0 1032 ´∞ ? ?

1019 10´43 1026 ?Quantum Gravity black holes?
1016 10´35 1026 GUT symmetry breaking quarks
300 10´12 1015 EW breaking leptons

?1015 ?10´35 ?1026 inflation starts
? ?10´32 Inflation ends

2 ¨ 105 10´12 ´ 10´6 2 ¨ 1013 quark confinement photons
10´4 Baryogenesis neutrinos

104 1 1010 proton/neutron „ 6 p,n
103 180 109 Nucleosynthesis electrons

blackbody
radiation dominated

10´9 5.6 ¨ 104yr 9000 matter=radiation
matter dominated

10´10 105yr 3000 decoupling photons CMB
1.5 ˚ 108 100´ 18 re-ionisation

108yr star formation
10´11 109yr 100 galaxy formation
10´4 13.7 ¨ 109yr 2.725 today

Table 7.1: Cosmic Overview

measure quantum gravity effects.
The Planck length is about 20 orders below the Fermi scale and 17 orders below the
smallest size measured.

lp =

c

 hG

c3
„ 1.6 ¨ 10´15m (7.3)

The corresponding time is

tp =

c

 hG

c5
„ 5.4 ¨ 10´44s (7.4)

and the corresponding density can be calculated

ρp =
c5

 hG2
„ 5.1 ¨ 1096 kg

m3
(7.5)

Finally, the Planck temperature is given by

Tp =

d

 hc5

Gk2
B

„ 1.4 ¨ 1032K (7.6)

where kB is the Boltzmann constant. The hottest temperature produced during colli-
sions at the LHC where at „ 5.5 ¨ 1012K.
I used that the fundamental constants are given by the dimensions

[c] = LT´1 [G] = L3M´1T2 [ h] = L2MT´1 [kB] = L2MT´2Q´1 (7.7)
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Furthermore, comparing the Planck values (equals high energy equals early times) to
today’s values give rather many orders of difference.
With an estimated age of „ 8.1 ¨ 1060tp, a length of 5.5 ¨ 1061lp and a mass of
1060mp the values are about 60 orders bigger. Similarly, the temperature has de-
creased to 1.9 ¨ 10´32K, so 64 orders smaller. The major difference can be seen in the
density,1.94 ¨10´123ρp, which emphasises the need for an explanation of the dilution.
See also 7.5 for a discussion on those large/small numbers.

The following two sections are oriented along the syllabus taught in the Unification
and Relativity and Cosmology modules this year.

7.3 Cosmological Standard Model

Based on general relativity (large scales) and the standard model of particle physics
(small scales) the cosmological standard model is set on the following pillars:

1. The hot Big Bang model which assumes the expansion of the universe from a sin-
gularity of infinite density and temperature. The expansion and cooling down
allowed the building of matter. GR breaks down at the initial singularity, or
rather at the Planck time (maybe even before) 2. The ΛCDM model describes
today’s content of approximately 73% dark energy (with the cosmological con-
stant as favourite candidate), 23% cold dark matter and 4% baryons.

2. The universe is homogeneous and isotropic on sufficiently large scales (cosmo-
logical principle).

3. The universe can be described as a hydrodynamic model. Often the Weyl Postu-
late is also assumed (geodesic lines don’t meet in more than one single singular
point meaning that there is a bundle of hypersurfaces that is orthogonal to the
geodesics).

The cosmological SM was tested in high precision.

1. Abundances of light elements (hydrogen, deuterium, helium and lithium) exist
in a certain ratio of abundances (nucleosynthesis),

2. Cosmic microwave background temperature anisotropy (CMB), (’Five-Year Wilkin-
son Microwave Anisotropy Probe Observations: Cosmological Interpretation’)
and blackbody nature, (A. Raghavan, ’Tracing the Evolution of Our Universe
through Blackbody Photon Dynamics’)

3. galaxy cluster observations, e.g. the Sloan Digital Sky Survey, (’The 3D power
spectrum of galaxies from the SDSS’)

2via dimension analysis tp =
b

 hG
c5 „ 1043sec., 7.2
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4. Hubble’s law3 and accelerating expansion, e.g. from distant type Ia supernovae,
(’The Supernova Legacy Survey: Measurement of ΩM, ΩLambda and w from the
First Year Data Set1’).

Perfect Fluid and Friedmann Equations

We follow the usual assumption of the universe being a perfect fluid and the equation
of state p = wρ. Hence, the energy-momentum tensor can be written as

Tµν = (ρ+ p)uµuν ´ pgµν (7.8)

with uµ = (1, 0, 0, 0). The equation of motion of Einstein’s field equations is given
by the Friedmann equations. Using the cosmological principle as starting point, place
the universe in FRW 4 setting to calculate the Einstein tensor and treat the energy-
matter tensor in terms of cosmological fluids, gives ten equations from which two are
non-zero.

Gµν = 8πTµν (7.10)

the tt-component gives the first Friedmann equation:

(
ȧ

a

)2

=
8π
3
ρ´

k

a2
(7.11)

where the first term of the RHS is the matter content with ρ the energy density and
the second term corresponds to the spatial geometry with k = 1, 0,´1 spherical,
flat and hyperbolic curvature respectively. The Hubble parameter indicates that this
equation can be seen as the expansion evolution. The critical density mentioned in
the flatness problem 2.3 is ρc =

3H2
0

8π . Note that the critical density is a function of
time.5 Furthermore, the acceleration of the expansion is given as the sum of the tt-
and rr-component:

ä

a
= ´

4π
3
(ρ+ 3p) (7.12)

3= the redshift-distance relation on large scales. In order for the expansion to preserve homogeneity
we need the mean rate of change of galaxy separations to follow the Hubble law, v = Hr. Standard
candles (same properties everywhere with period-luminosity relation in cepheid distances) are often
used e.g. by the Hubble space telescope.). The universe must be expanding, a direct result of CP.

4Spatial homogeneity and isotropy imply a special foliation with a manifold where the cosmic time
component does take a ’special’ place in. The usual FRW metric of ds2 = ´dt2 +a2(t)2γijdx

idxj with
the expansion factor a(t) and the comoving coordinates is often written in the following two forms:

ds2 = ´dt2 + a2(t)(dη2 +

$

&

%

= sin2η
= η2

= sinh2η

,

.

-

dΩ2) (7.9)

where dΩ is the volume element of the 2-sphere followed by the related terms for curvature k =
1, 0,´1 respectively, and in areal coordinates: ds2 = ´dt2 + a2(t)( dr2

1´kr2 + r2dΩ2).
5For the current Hubble ’constant’ - another big mystery - of H0 = 100hkm/sec/Mpc =

h(9.78Gyr)´1 and WMAP’s data for h = 0.7 this give „ 1.88 ¨ 10´32h2 kg
cm3 giving „ 9.21 ¨ 10´27 kg

cm3 .

140



Those can be combined to give the equation of conservation

ρ̇+ 3
ȧ

a
(p+ ρ) = 0 (7.13)

This gives indeed the energy conservation since assuming p = ωρ and the first law of
thermodynamics dE = ´pdV , this can be rewritten

d(ρa3) = ´pd(a3)Ñ ρd(a3) + a3dρ = ´ωρd(a3) (7.14)

Integration leads to the same result as above

ż

dρ

ρ
= ´(1 +ω)

ż

d(a3)

a3
Ñ ρ 9 a´3(1+ω) (7.15)

6 Similarly, ∇µTµν = 0 results in the previous equation. Thus, we arrive at two
independent equations and the dynamical a(t), ρ(t),p(t) where the density and the
pressure are correlated via the corresponding matter content. After integrating the
conservation equation, it is helpful to collect all relations dependent on the form of
matter. This can again trace back to the history of the universe. The radiation epoch
dominates as a Ñ 0, then the matter epoch dominates and finally the cosmological
constant. The relations are given for k = 0.

radiation matter vacuum
ω 1

3 0 ´1
ρ „ a´4 „ t´2 „ a´3 „ t´2 const.
p „ 1

3ρ 0 ´ρ

a(t) „ t
1
2 „ t

2
3 „ e

?
Λ
3 t,eH0t

H 1
2t

2
3t

b

Λ
3 =const.

horizon 2t
a
= 2t 3t

a
= 3t

A particle fromw = 1
3 to 0 goes from relativistic to non-relativistic. A scalar field with

0 potential would have a value of 1. Intuitively, degenerate gas might have a higher
value than 1

3 , but so far there is no experimental or theoretical evidence. Values below
´1

3 give exponential expansion, with ´1 being today’s dark energy (assumed to be)7

that makes the accelerating late time expansion possible and inflation having a value
of „ ´1. Values even below that are called phantom energy and would cause a Big
Rip of the universe.

6The density is intuitively for matter anti-proportional to the expansion factor cubed as the it presents
the expanding volume of the universe. For radiation the additional redshifting makes its dependence
fourth order.

7An alternative would be quintessence where ω is dynamic, the ratio of p and ρ of a hypothetical
scalar field 3.7.
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7.3.1 SR

It is useful to calculate the general form of a for a given potential that depends on the
scalar field φ. SR gives

H =
d lna
dt

„

c

8πV
3

3Hφ̇ =„ ´V 1
(7.16)

which can be combined to

φ̇
d lna
dφ

„ ´
V 1

3H
d lna
dφ

, ´d lna
8πV
V 1

dφ (7.17)

The scale factor can then be written in terms of the potential which itself is dependent
on φ:

a(φ) „ aie
8π

şφ
φi

V
V 1
dφ 1 (7.18)
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Further restriction on the parameters can be calculated with help of the density per-
turbation constraint, δρ

ρ
„ 10´5

Figure 7.1: SF and LF potentials predict dif-
ferent value ranges of ns and r. Taken from
’Inflationary Cosmology: From Theory to Ob-
servations’, 2018. Today’s data favours the area
around where SF/LF meet.

One can also differ between large field
(LF) and small field (SF) potentials. For-
mer has a positive value for the sec-
ond derivative wrt φ whereas latter can
change the sign. They predict differ-
ent evolutions and for example different
ns ´ r values. For example, the hill-
top potential for φ ă µ is SF if φ ă

λ ăă mp and LF if λ „ mp. SF pre-
dicts 0 ă ε ăă η, a scalar spectrum in-
dex of smaller one and r almost vanish-
ing whereas LF predicts r ď ´8

3(ns ´ 1)
(and weirdly η ă 0).
Initially, LF models are away from the
stable minimum, but evolve to the state
during the end of inflation. SF models,
however, simply evolve away from an un-
stable maximum. Hybrid models’ end
state is a minimum (vacuum) other than
0.

7.3.2 Energy Conditions

There is a hierarchy of conditions.

1. strong energy condition: (Tµν ´ 1
2gµνT)V

µVν ě 0.

2. dominant energy condition: TµνVµ ď 0 + WEC.

3. weak energy condition: TµνVµVν ě 0.

whereVµ are future-pointing timelike for the first and third and timelike or null for the
second. Note that the WEC part is nothing else than the total mass-energy density and
the DEC gives minus the pressure. The SEC part is proportional to the Raychaudhuri
scalar. There is also the null energy condition, TµνVµVν ě 0, for every future-pointing
null vector field V.
Obviously, dark energy 3.7 and inflation violate the SEC.
Postulating that the universe behaves like a perfect fluid gives

1. NEC: ρ+ p ě 0

2. WEC: NEC + ρ ě 0

3. DEC: ρ ě |p|

4. SEC: NEC + ρ+ 3p ě 0
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meaning dominant implies weak, weak implies null and strong implies null as well.
Again it is obvious that the false vacuum during inflation violated the SEC.
I can also rewrite this in terms of the FRW metric (including curvature),

ρ =
3

8πG

((
ȧ

a

)
+
k

a2

)
p = ´

1
8πG

(
2ä
a

+
ȧ2

a2
+
k

a2

) (7.19)

to

1. NEC: ´ ä
a
+ ȧ2

a2 +
k
a2 ě 0

2. WEC: ȧ
2

a2 +
k
a2 ě 0

3. DEC: ´2
(
ȧ2

a2 +
k
a2

)
ď ä
a
ď

(
ȧ2

a2

)
+ k
a2

4. SEC: ä
a
ď 0

again shows that SEC is violated by inflation (simply by its definition).
Furthermore, when calculating the expansion factor during inflation curvature was

assumed to be negligible.(
ȧ

a

)2

=
8πGρ

3
Ñ a(t) = a0e

Ht with H =

c

8πGρ
3

(7.20)

where a possible negative exponent would decay quickly. Note for arbitrary k this
gives

dt =

(
8πGρa2

3
´ k

)´ 1
2

da (7.21)

t =
1
H
cosh´1(Ha) k = +1 a(t) =

1
H
cosh(Ht) (7.22)

t =
1
H
sinh´1(Ha) k = ´1 a(t) =

1
H
sinh(Ht) (7.23)

both of which tend to the flat space’s result as tÑ∞.

7.4 Scalar Fields in Cosmology

The cosmological principle states that a possible scalar field has only temporal depen-
dence. The most general Lagrangian would be

L≺ =
1
2
gµνB

µφBνφ´ V (7.24)

where φ is the scalar field and V is the potential. This should be added to the normal
Einstein-Hilbert action.

S =

ż

d4x
?
´g

(
1
2
R+

1
2
gµνB

µφBνφ´ V

)
(7.25)
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Following the conditions and FRW metric and using Noether’s theorem this gives

Tµν = ´
´2
?
´g

BSφ

Bgµν
= gµνL + BµφBνφ (7.26)

giving T00 = ρ = φ̇2

2 +V and Tij = 3p = a2γij(
φ̇2

2 ´V). The equation of state is then

obviously bounded w =
1´ 2V

φ̇2

1+ 2V
φ̇2

with ´1 ď w ě 1. The slow-roll condition implies that

the kinetic energy φ̇2 is smaller than the potential energy V(φ) and in the equation
of motion of this Lagrangian (via Euler-Lagrange)

δSφ

δφ
=

1
?
´g
Bµ (

?
´gBµφ) + V 1 = 0 Ø φ̈+ 3Hφ̇ = ´V 1(φ) (7.27)

φ̈ is vanishing small.9 The spatial part was ignored, φ(x) = φ(t,~x) = φ(t), due to
the homogeneity and isotropy conditions.
Worth mentioning here is that physical gradients are related to comoving ones by the
scale factor

∇comoving = a(t)∇physical (7.28)

Inhomogeneities are then redshifted during inflation at the same rate as the scale
factor increases during inflation.

7.5 Dicke’s Fine-Tuning

Would Guth come up with the ’spectacular realization’ of inflation without Dicke’s talk
on the issue of fine-tuning?

Dicke analysed the size of the constant in nature and their dimensionless ratios,
Gm2

p

 hc
„

5 ¨ 10´39 (mp is a mass of an elementary particle, here the proton) is a very small
dimensionless ratio. Why is the (dimensionless) gravitational constant compared to
other coupling constants so small? And why are there apparent relations between the
numbers?10 In [13] he puts Eddington’s opinion (e.g. 1936) that such dimensionless
constants should be regarded as mathematical expressions and Dirac’s opinion (e.g.
1938)11 to somehow relate such numbers into contrast. Dirac indeed suggested that
large/small numbers vary in time, (1040)n where the number 40 comes from quantities
like the dimensionless age of the universe (T „ 1

H
), Tmpc

 h
or the observable size of the

universe M
mp

„ (1040)2. Other ratios that are more common in classical physics such
as the fine structure constant or the ratio of the masses of elementary particles are
compared to that of order unity. If we simply follow statistical arguments it is rather
unlikely that such numbers occur. If we however add biological requirements encoded
in physical quantities such as the age of the universe/ sufficient time for galaxies to

9Note that this equation is similar to a damping oscillation motion with H dominating the friction
behaviour.

10gravitational constant = (Hubble age)´1 = (total particle number)´
1
2 .

11Dirac compared the dimensionless constants T0
e2

mec3

„ 1039,
ρ( c
H0

)3

mp
„ 1078, e2

Gmpme
„ 1038 with

T0 = H´1
0 , ρ as mean density of all matter and me electron, mp proton mass.
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have formed etc which we then can observe - otherwise we wouldn’t exist and then we
couldn’t observe it - Dirac’s argument can then be taken seriously according to Dicke.
For specific calculations see [13]. He continues that the smallness of the gravitational
constant and the apparent relations between the numbers can be explained by Mach’s
Principle which says that GM

c3T
stays constant of order unity i.e. in this version it is

varying according to the total mass of the universe (the spacetime metric is determined
by the mass of the universe) and hence time, G „ 1

t
. Because of its enormous size the

gravitational constant is so small.
Obviously, this cannot be correct, as Ø Ġ

G
„ ´1

t
and according to Dirac Ġ

G
|today =

´3H0. This would mean that our universe is rather young, t „ T0
3 „ 108yrs, even

younger than the Earth. Nonetheless, it was still an important thought.

7.6 Cosmological No-Hair Conjecture

The cosmological no-hair conjecture was proven for small perturbations is assumed to
be true for large perturbations as well (Hawking and Moss, 1982). It states:

If p = ´ρc2 and ρ ą 0, then any system will evolve to locally resemble a flat expo-
nential expanding spacetime.
This means that for initial conditions (not necessarily homogeneity and isotropy) the
region approaches de Sitter. It is similar to the no-hair theorem for black holes as
generic conditions lead to the same end state and the initial state cannot be extrapo-
lated from the final state.

7.7 Further Calculations

7.7.1 How Many Causally Unconnected Regions Were There?

Without inflation one can estimate the number of causally unconnected regions. Tak-
ing the Planck time as starting point (before that we can only make further assump-
tions) tp „ 1

mp
„ 10´43s corresponds to a length of lp = ctp „ 10´33cm. Today’s

universe is of the size 1028cm. Now, if we assume an adiabatic hot universe that
aT = constant with the Planck temperature of Tp „ 1032K and today’s temperature
T0 „ 2.7K the size at Planck time was 10´4cm (so 1030 times the ’initial’ size). Di-
viding by the Planck length as measurement for the causally connected regions gives
1090 different regions. That’s a huge amount! [40] In fact, there must be an infinite
number of horizons inside the singularity.
Let us also calculate the observable size of the universe depending on the curvature.
The comoving distance to the cosmological horizon from is given by

ż t0

te

dt 1

a(t 1)
=

ż re

0

dr 1
?

1´ kr 12
=

$

’

&

’

%

arcsin re,k = 1

re,k = 0

arcsinh re,k = ´1

(7.29)

assuming the simple BB model where the universe expands in FRW 7.1. We can mea-
sure the redshift z, and the dimensionless values of today’s density parameters, on
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large scales, we can use Ω = 1 in total 3.113 and rewrite the Hubble parameter in
terms of the matter content

H(t) =
ȧ(t)

a(t)
,dt =

dt

dz
dz, 1 + z =

a0

a(t)
(7.30)

Ωk0 = 1´Ωr0 ´Ωm0 ´ΩΛ0 = ´
k

(H0a0)2
(7.31)

H(z) = H0(Ωr0(1 + z)4 +Ωm0(1 + z)3 +Ωk0 +ΩΛ0) (7.32)

The cosmological horizon a0re is then given by
$

’

&

’

%

(H0
?
Ωk0) sinh

(
I
?
Ωk0

)
, Ωk0 ą 0

I
H0

, Ωk0 = 0

(H0
?
´Ωk0) sin

(
I
?
´Ωk0

)
, Ωk0 ă 0

(7.33)

where the integral can be numerically solved

I =

ż ze

0

dz
a

Ωr0(1 + z)4 +Ωm0(1 + z)3 +Ωk0 +ΩΛ0
(7.34)

Using Planck data [20] this gives for 0 curvature about 4 ¨ 1010 lightyears which is
quite accurate with a proposed diameter of 9.3 ¨ 1010 lightyears.

7.7.2 Energy Scale at Inflation

It is not known what the energy scale during inflation is. It is assumed to take place
at EGUT i.e. the energy at which symmetry breaking in the Grand Unified Theory
occurs. From data measured at particle accelerators at accessible energies we can
extrapolate where the interactions of the standard model meet. It is expected to be
at EGUT „ 2 ¨ 1016GeV12, so three magnitudes smaller than the Planck energy. It has
been tested up to 100GeV. Dimensional analysis then gives a false vacuum density of
ρf „

E4
GUT

 h3c5 „ 2.3 ¨ 1081 g
cm3 .

(to be continued)

7.7.3 Magnetic Monopoles in Cosmology

Following Preskill [58]we can estimate the minimum size of monopoles by extremising
the sum of the energy stored in the core and the magnetostatic field energy

r „
d

dr

(
4πM2

GUTr+
4πg2

r

)
= 0 giving r „

MGUT

g
with g = gD =

1
2e

(7.35)

Hence, the radius is of order r „ 1
eMGUT

„ 1
MX

„ 10´28cm for a typical heavy gauge
boson mass and assuming the desert hypothesis.
The mass can be approximated via

m „
4π
e2
MX „ 1016GeV „ 10´8g (7.36)

12See ’GUT Physics in the Era of the LHC’(2019), with the help of RG flow the crossing point of the
coupling constants of the interactions is calculated. Note that the energy isn’t that big, but for a region
of subatomar size it is.
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13 This is a classical object, with a mass much higher than any observed particle today
and a size greater than its Compton wavelength. Why is it stable despite its high mass?
The lightest magnetic monopole must be stable as it would be the lightest magnetically
charged particle and magnetic charge must be conserved.
The number of monopoles is dependent on the mechanism [58]. We need to calculate
the primordial production number of monopoles and the dilution via the expansion
(without inflation) afterwards. If the universe cooled down in a second order phase
transition14 large fluctuations in the Higgs field result in frozen defects during the
expansion (Kibble). Uncorrelated vacua meet and form the monopoles. The initial
density can be approximated via ninitial „ px´3

i where i is the correlation length and
p the probability of forming, so antiproportional to the volume. An upper bound
was calculated by Guth and Tye (1980) [2] with the correlation length (the maximal
distance over which the field at point A in space is correlated with the field at point B)
smaller than the particle horizon (furthest possible distance information could have
travelled in a finite amount of time of the transition) xi ă dH „

Cmp

T 2 , where C is
the specific heat C = 0.6N´0.5, N the effective number of massless spin degrees of
freedom at T. Calculations beyond the scope of this thesis give C „ 1

20 at the critical
temperature of Tc „ 1015GeV, a Planck mass of mp „ 1019GeV and an estimated
probability of 10%. ( n

T 3

)
initial
¦ p

(
Tc

Cmp

)3

= 10´10 (7.37)

If the universe underwent a first order phase transition i.e. a supercooling phase bub-
bles nucleated for T ă Tc, expanded, collided and coalesced. Monopoles are formed
when the homogeneity within the uncorrelated bubbles is disturbed by the collision.
The field attempts to smoothly match over the boundary, hence topological defects
form. The density is proportional to the density of collisions n ą p d´3

H . Hence, the
previous bound holds here as well.
Now, the annihilation, after the production the expansion of the universe dominates,
has to be estimated. Preskill assumes equal densities of monopoles and anti monopoles
and describes the density’s evolution with dn

dt
= ´D(T)n2 ´ 3 ȧ

a
n where the first part

describes the annihilation process and the second part the expansion. In the follow-
ing he proves that the density doesn’t change much. Setting the mean free path not
bigger than the characteristic distance he arrives at n

T 3 „
Nc
g2

T
Cmp

„ 1
Ncg6

m
Cmp

„ 10´9.
The expansion dominates so much that the probability of annihilation decreases and
the initial and current density shouldn’t change that much. We expect a density of
n „ T 310´10. This might be comparable with baryons, but recall that monopoles are
expected to have 1016 times the mass.
As a side note, as mentioned in the footnote in the monopole section, the Dirac quan-
tisation condition can be derived with the help of simple electromagnetism [30]. Re-

13Note if I would have calculated the energy of the monopole as I would calculate the energy of a
particle in a standard field it would go like E = 4π

ş

r2|∇H|2 for a sphere of radius r, far away the Higgs
field goes like 1

r1
, so the energy would diverge. The Higgs field must couple to other fields, it contains

magnetic charge. Again, those defects of the Higgs field create the monopoles.
14A first order transition is characterised by a jump in the β- energy diagram due to a discontinuity

in β to logZ map, giving an infinite second derivative of logZ (basically the specific heat) with respect
to β at the phase transition. A second order phase transition is the continuous counter part.
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garding the sketch the radius r =
ş

Sρ
c2 dV where S = E^B and ρ = R sinβ can be cal-

culated by substituting the electric field E = 1
4πε0

e
d2 and the magnetic field B = 1

4πµ0

g
R2

and the geometric equations sinα
sinβ = 1

d
and d2 = R2 +x2 +2Rx cosβ one arrives at the

formula for the radius of r = eg
4π . Using quantum mechanics (recall, the production

takes place at high energies) we need to equate the size with eg
4π = n h

2 Ñ eg = nh. To
be clear this is the so called Dirac monopole which should be distinguished from the
cosmic (’t Hooft type) ones. Latter can be created/ are solution of the field equations
in all gauge theories with the electromagnetic U(1) as subgroup of a larger group.

Magnetic monopoles in gauge theory phase transition

The mechanism explained above is called the Kibble mechanism. The number density
at the freeze out is here proportional to 1

η3 , where η as mentioned above is the radius
of uncorrelated φ domains. If we want to introduce local symmetries the Lagrangian
is changed with δµ Ñ Dµ´igAµ, hence covariant derivative instead of partial deriva-
tive and adding the term 1

ig
[Dµ,Dν]. Importantly, the transition is now not a point,

but rather a smooth connection between the phases. The monopole production are
suppressed by a magnetic Coulomb interaction. Assuming the ratio of ( λ

g2 „ 1) to
have a smooth phase transition gives the number of monopoles at the freeze out (hat)
is

n̂M „
g2T

ζ̂2
(7.38)

In the broken phase, so mM ą T (Bais, Ruddas 1980) the equilibrium monopole
density is given by

neqM „ (7.39)

which is similar to the Debye–Hueckel approximation for the electric- field screening15

with mM „
φ
g
„

b

´m2

λg2 . The screening length for the magnetic field is given by

η „ 1
mM

.
Furthermore, in the Kibble mechanism there is a strong negative correlation between
the monopoles at short distance, whereas here it is positive. (to be continued)

7.7.4 Slow-Roll Parameters

H2 =
8πG

3
V(φ) (7.40)

3Hφ̇ = ´V 1 (7.41)

Claim: ä ą 0 and a ą 0 iff ε ă 1
Proof:

Ñ Ḣ =
ä

a
´

(
ȧ

a

)2

with ä ą 0 and a ą 0 Ḣ+H2
ą 0 Ø ´

Ḣ

H2
ă 1 Ø ε ă 1

(7.42)

15The Debye length is the distance in which measurable charge separation can occur. Electric-field
screening is similar to the screening described here.
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Now proving ε = 1
16πG

(
V 1

V

)2
as

Differentiate 7.40 2HḢ =
8πG

3
dφ

dt

dV

dφ
using 7.41 Ø ´

Ḣ

H2
=

4πG
H2

φ̇2 (7.43)

substituting both equations Ø ε =
1

16πG

(
V 1

V

)2

(7.44)

Ð ε ă 1 Ø ´Ḣ ă H2
Ø ´

ä

a
ă 2

(
ȧ

a

)2

(7.45)

which is only possible if ä ą 0 and a ą 0, hence the SR conditions. Note that the SR
condition is a sufficient but not necessary condition for inflation.

Simple Massive Scalar Potential

To get an intuition for the initial values needed I will calculate two examples. The
textbook example is given by a potential of V = 1

2m
2φ2. This gives ε = η = 1

4πGφ2 .

Inflation occurs for φ ąą

b

1
4πG , so a field value of much higher than the Planck

value and for a number of e-folds of 60 would need an initial field value of „ 15mp,

again a very fine-tuned number (N = 60 = 2πG(φ2
i ´ φ

2
f) with φf =

b

1
4πG).

Using 3.81 for ε = η = 1
120 we get a spectral index of ns „ 0.967 and a tensor-to-

scalar ratio of r „ 0.133.

Powerlaw Inflation

For a potential of V = V0 exp
!

(´
b

16πG
p
φ)

)

type16 the parameters are easily derived

ε = 1
p

and η = 2
p

. Calculating ε and η for a power law inflation gives constant values.
Hence, inflation is satisfied for p ă 1. However, this inflation would never end.

Chaotic Inflation

Whilst Linde shows this for V = λφ4, I will apply the scenario to the usual V =
1
2m

2φ2. We also assume that the field is classical and homogeneous over its domain
(not necessarily over H´1, such that the Friedmann equation in SR can be applied.

H =

c

8πVG
3

=

c

4πG
3
mφ (7.46)

3Hφ̇ = ´V 1 = ´m2φ (7.47)

giving φ(t) = φ0 ´
m

2
?

3πG
t (for the quadratic potential he arrives at an exponential

16This gives a(t) 9 tp when substituting the potential into the SR equations and solving for H in the
first equation and substituting it in the equation of motion and integrating gives φ 9

?
p ln ( 16πGV0

(3p´1)pt).

Back in 7.40 this gives H2 = p2

t2 Ø a(t) 9 tp.
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field) and substituting back in and rearranging gives a(t) = a0 exp(2φG(φ2
0 ´ φ

2)).
The characteristic time (where the field remains constant i.e. flat rolling) is then
δt „ φG

m
under which we have a(δt) „ a0e

Hδt = exp2
?

π
3φ

2
0 . For 60 e-folds φ

must exceed 3mp (which he also calculates for the quadratic potential). This is more
reasonable assumption than several orders higher predicted by the old and new infla-
tion scenario. For values below the field oscillates and reheating occurs.
Worth mentioning is that chaotic inflation does need fine-tuned parameters. The
V = λφ4 potential needs for 60 e-folds a parameter of λ´

1
2 ąą 60. Using pertur-

bation estimations 10´5 „

∣∣∣δρρ ∣∣∣ „ ∣∣∣H2

φ̇
„ V

3
2

V 1

∣∣∣ even give λ „ 10´10, again a rather

small coupling. In order for quantum gravity effects to be small it is postulated that
the energy-matter tensor is smaller than m4

p (classical description is only possible for
the field values being smaller than the Planck mass) sets a constraint of λ ă 10´2

(for the massive scalar potential this would constraint the initial field value to
m2
p

m
.

Nonetheless, this potential gives ns „ 0.95 and r „ 0.3, so not far away from obser-
vational results using the formulae derived in 3.5.1.
Interestingly, the quadratic choatic model gives the same prediction as the Starobinsky

model with ε = η =
m2
p

4πφ2 ,N „ 2πφ˚
m2
p

giving ns „ 1´ 2
N

which is favoured by Planck.

7.7.5 Size of the Universe

To get an estimate of the increase of the universe’s size during inflation, I assume that
it entered inflation at ti = 10´36s and ended at either tf = 5 ¨ 10´34s or tf = 10´34s.
This will show that only small changes in those unknown values have a major impact.
I assume radiation domination and constant Hubble constant.

Hi =
1
2t

= 5 ¨ 1035s´1 substituting in ri =
2c
H

= 1.2 ¨ 10´27m (7.48)

Now assuming exponential expansion for the duration

af

ai
= eHδt =

#

2.272 ¨ 10108 for tf = 5 ¨ 10´34s

3.145 ¨ 1021 for tf = 10´34s
(7.49)

giving a final size of rf = 2.7264 ¨ 1081m and rf = 3.774 ¨ 10´6m, respectively. This is
obviously a huge difference and differs from 7.7.1.

7.7.6 CMB Temperatures

A simple way to calculate today’s CMB temperature is with the help the Boltzmann
law (by integrating the Planck spectrum over all wavelengths)

Eγ =
ργt
nγ

=
g
30π

2T 4

g˚ζ(3)
π2 T 3

(7.50)

which gives for photons (bosons and two spin states), g = g˚ = 2 and introducing kB
for dimensional reasons

π4kBT

30ζ(3)
„ 2.701kBT (7.51)
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where I reintroduced the Boltzman constant. I also calculate an estimation for the
temperature at the second Hubble crossing, to compare it to the calculated reheating
temperature and today’s temperature.
I assume instantaneous radiation domination and h = 0.7. The horizon size is given
by 2t = H´1, SR gives 8π

3mp
ρ = H2 = (2t)´2 and again using the energy density

formula for radiation ρ = gπ2

30 T
417. Equating with constants for dimensional reasons

gives a temperature of

Tγ =
1

kB
?
t

(
45 h3c5mp

16π3g

) 1
4

(7.52)

As at the Hubble crossing λ(t) = cH´1, λ(t)
λ0

= a(t)
a0

and aT is approximately constant,
the time of crossing is

t =

(
π3gG

45 h3c5

) 1
2
(
kBTγ0

c

)2

λ2 (7.53)

A wavelength of the size of the Andromeda galaxy („ 2.2¨106 ltyr) gives t „ 2.06 yr. A
time of 50, 000 years corresponds to a wavelength of 3.8925 ¨ 108 ltyr (the observable
universe’s size is about 93 ¨ 109 a good approximation).

7.7.7 Weyl Curvature

Further treatment of 4.1.1.
Firstly, the FRW metric (´1,a(t)2γij) gives non-zero Christoffel symbols18

Γ tij = aȧγij Γ ijt =
ȧ

a
δij Γ ijk (7.54)

giving only three (+the terms that can be calculated from the symmetry properties)
non-vanishing Riemann components

Rtitj = aäγij Rittj =
ä

a
δij Rijkm =(3) Rijkm + ȧ2(γjmδ

i
k ´ γjkδ

i
m) (7.55)

where (3)Rijkm is the spatial Riemann tensor, for a maximally symmetric spacetime
(3)Rijkmk(γikγjm ´ γimγjk. Similarly,

Rtt = ´
3ä
a

Rij =
(3) Rij + γij(2ȧ2 + aä) (7.56)

where (3)Rij = 2kγij and finally

R = 6

(
ä

a
+

(
ȧ

a

)2

+
k

a2

)
(7.57)

17I calculate the degrees of freedom for photons and neutrinos. g = gγ + gν = 2 + 21
4 ( 4

11 )
4
2 „ 2.36

where fermions contribute 7
8 of the 3 ¨ 2 ¨ 1 (flavours, particle and antiparticle, spin) and the factor

accounts for the number density (-temperature ratio) between photons and neutrinos,
(
Tν
Tγ

)4
.

18calculated during the R&C course.
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The Weyl curvature tensor vanishes for FRW. One can either substitute in the Riemann
and Ricci components, in 4dim,

Cµναβ = Rµναβ+
1
2
(Rµβ)gνα´RµαRνβ+Rναgµβ´Rνβgµα)+

R

6
(gµαgνβ´gµβgνα)

(7.58)
which cancel for all. For example, Ctitj = ´aäγij +

1
2(

3ä
a
a2γij + γij(2k + 2ȧ2 +

aä)) + R
6a

2γij = 0 Similarly, it is obvious that the metric is conformally flat for k = 0
if one rewrites the metric in conformal and spherical coordinates

ds2 = a(η)2(´dη2 + dr2 + r2dΩ2) (7.59)

For k˘ 1 this can be proven using the vielbein formalism.
Thus, the Weyl tensor vanishes for the FRW metric.
Now, I want to investigate the constraint on the Weyl curvature as measurement for
gravitational entropy, i.e. that it equals Hawking’s black hole entropy formula. The
Schwarzschild metric in four dimensions gives a Weyl scalar, due to the vanishing of
Rµν and R of

CµναβC
µναβ = RµναβR

µναβ =
12r2

s

r6
(7.60)

with a Schwarzschild radius of rs = 2GM. Note that the metric is not defined at the
curvature singularity r = 0, but for now I am interested in large scales. The Hawking
entropy is given by

S =
A

4G
=
πr2
s

G
(7.61)

Hence, the Weyl scalar is proportional to the entropy.
However, one should integrate the Weyl scalar over the proper volume to get the en-
tropy. Simple dimensional counting for

S =

ż

CµναβC
µναβdV (7.62)

[Cµναβ] = 2 in natural units (second derivative), the volume element of an n-dim
manifold is [dVn´1] = ´n+ 1, the entropy should be dimensionless in natural units.
So this only works for 4 ´ n + 1 = 0 a spacetime with five dimensions. The n-dim
metric is given by19

ds2 = ´f(r)dt2 + f(r)´1dr2 + r2dΩ2
n´2 (7.63)

with f(r) = 1´
(
rsn
r

)n´3
and the Schwarzschild radius rsn =

b

16πGM
n´2 . For n=5 the

Weyl scalar gives an additional 6
(
rs
r

)2
factor, so

C2 =
72r4

s5

r8
rs5 =

c

8GM
3π

(7.64)

19Emparan, Reall, 2008, ’Black Holes in Higher Dimensions’
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and a volume element of dV = r3
(∣∣∣1´ r2

s5
r2

∣∣∣)´ 1
2

2π2dr, gives the result

S =
144π2(8GM)2

9π2

ż rs5

rÑ0

dr

r5
a

´f(r)

ż ∞
rs5

dr

r5
a

f(r)
(7.65)

where I took into account that we have constant time hypersurfaces that are spacelike
for r ą rs5 ( δ

δt
is timelike) and timelike for r ă rs5 ( δ

δt
is spacelike). The integral is

not defined for r = 0, quantum gravity effects should be below r „ G
1
3 (dimensional

analysis, other G). This results in

S = 1024G2M2


b

r2
s5
r2 ´ 1(r2

s5 + 2r2)

3r4
s5r

2

∣∣∣∣rs5

G
1
3

+

b

´
r2
s5
r2 + 1(r2

s5 + 2r2)

3r4
s5r

2

∣∣∣∣∞
rs5


= 96π2

1´

d

8MG1
3

3π
´ 1

(
1 +

4MG
1
3

3π

) (7.66)

For 8MG 1
3

3π ąą 1 (Schwarzschild radius bigger than Planck scale) this approaches

48π2
(

8MG
1
3

3π

) 2
3

= 48π2 r
3
s5
G

. Calculating the entropy via Hawking’s formula gives

SBH = 4
(
π

1
3G

1
3M

3

) 2
3

=
π2r3

s5
2G . Thus, SBH = 1

96S.
Thus, Penrose’s constraint that the Weyl measurement should give the black hole en-
tropy is only valid for a five dimensional spacetime (at least if one literally takes the
Weyl scalar, modifications might be possible).

7.7.8 Starobinsky Powerspectrum

The Jordan frame gives the Starobinsky model in the form of modified gravity i.e.
„ R2, the Einstein frame is the model after conformal transformation and the intro-
duction of the scalar field φ which I derived in 3.20, 3.3.6. I follow the treatment of
3.99 which derivations I checked, but won’t reproduce here.

Jordan Frame

Starting with a general f(R) theory, L =
?
´g

16πG the eom is given by (Mukhanov, also
see similar derivation in 3.20)

f 1Rµν ´
1
2
gµν + (gµν�´∇µ∇ν)f 1 = 0 (7.67)

see also 3.3.6, which gives for the background and H = ȧ
a

in FRW cosmology

0 = 3(Ḣ+H2)f 1 ´
1
2
f´ 3Hḟ 1 (7.68)

0 = (Ḣ+ 3H2)f 1 ´
1
2
f´ f̈ 1 ´ 2Hḟ 1 (7.69)
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where f, f 1 is evaluated at R = Rµµ = 6Ḣ + 12H2 which is time dependent only. The
perturbed metric is given by

gij = a
2e2ζ+h (7.70)

ζ being the scalar perturbation and hij the tensor perturbation (TT gauge, hii =
hij,i = 0. Homogeneity and isotropy 3.99 (see also treatment in 3.5.1) gives the
perturbations both dependent on time and space

ζ(x) = 2
?
πG

ż

d3k

(2π)3

(
v(t,~k)ei~k.~xαs(~k) + v ˚ (t,~k)e´i

~k.~xα:s

)
(7.71)

hij(x) = 4
?

2πG
ż

d3k

(2π)3

(
u(t,~k)ei~k.~xαt(~k)εij + u ˚ (t,~k)e´i

~k.~xα:tε
˚
ij

)
(7.72)

The polarisation is as in flat space, kiεij = εii = 0, εij(λ1)ε
˚
ij(λ2) = δ12 and summed

over (~k, λ), λ = ˘. α satisfies the usual commutation relations, [αs,αs] = (2π)3δ(3)(k1´

k2) and for the tensor relation with an additional polarisation δ12. The power spectra
is now given by xΩ| ζ(t,~x)ζ(t,~0) |Ωy evaluated over k3

2π2

ş

d3xe´i
~k~x and similar for the

tensor perturbations. Hence, we arrive at a late time formula depending on the norm
of v and u and k only meaning momentum and time dependent (compare with 3.85).

∆2
s(t,k) =

2k3G

π
|v(t,k)|2 (7.73)

∆2
t(t,k) =

32k3G

π
|u(t,k)|2 (7.74)

Those can be evaluated from substituting the modes into the eom and quantising
canonically, giving the formulae 3.99.

vv̇˚ ´ v̇v˚ =
i

f 1a3C
, C =

3(f2Bt(6Ḣ+12H2))2

(2f 1H)2(
f2Bt(6Ḣ+12H2

2f 1H + 1
)2 (7.75)

v̈+ v̇

(
3H+

f2Bt(6Ḣ+ 12H2)

f 1
+
Ċ

C

)
+

(
k

a

)2

v = 0 (7.76)

where f is again evaluated at the background 6Ḣ + 12H2. Similarly, for the tensor
mode. This can be evaluated up to a factor which is given by the Bunch Davies IC
which can then be substituted back into the power spectra formulae.

Einstein Frame

The treatment is similar to the one above with the eom given by the transformed
Lagrangian where we identify φ = f 1 (3.3.6). The hat indicates the evaluation in the
Einstein frame.

L̂ =
a

´ĝ

(
R̂

16πG
´

1
2
BµB

νφ´ V

)
(7.77)

V =
1

16πG
e´2
?

16πG
3 φ̂V̂

(
e
?

16πG
3 φ̂
)

(7.78)

U = φR̂´ f(R̂), φ̂ =

c

3
16πG

lnφ (7.79)
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I proceed by calculating the background equation, gauge fixing as before (note new
variables), calculating ĝij, ĥij and the power spectra. Again by getting û, v̂. ζ =
ζ̂,hij = ĥij which should then also give the same numerical values. For the power
spectra we actually arrive at another form,

∆2
s „

gĤ2

πε̂
, ε̂(t̂) = Bt

1

Ĥ
(7.80)

∆2
t =

16GĤ2

π
(7.81)

compared to

∆2
s =

H2

48π2f 1ε2
(7.82)

∆2
t =

H2

π2f 1
(7.83)

We can already see that this is the case as the expansion factor is related by â(t̂) =
?
f 1a(t), dt̂

dt
=
?
f 1. In the Einstein Frame we have indeed r „ 16ε̂whereas the Jordan

Frame gives „ 48ε2!.
The application to R2 can be found in 3.20.

7.8 VSL Constraints

Digression from 3.6.1. The Friedmann equations with Newton’s constant and the
speed of light time-varying [7](

ȧ

a

)2

=
8πρG(t)

3
´
kc(t)2

a2

ä = ´
4πG(t)

3

(
ρ+

3pa
c(t)2

) (7.84)

It is actually very useful to keep this in mind as often due to c = G = 1 dimensions
are forgotten.
[c] = LT,[G] = L3T´2M´1, [H] = [ ȧ

a
] = T´1, [ρ] = ML´3, [a] = 0,[ȧ] = T´1

Differentiating the first and substituting this and the equation itself in gives the new
conservation equation.

ρ̇+ 3
ȧ

a

( p
c2

+ ρ
)
= ´ρ

Ġ

G
+

3kcċ
4πGa2

(7.85)

Assuming an equation of state p = (γ ´ 1)ρc2 (giving a GR result Ġ = ċ = 0 of
ρ „ a3γ). Looking at Friedmann’s equations 7.3 the flatness and horizon problem are
solved for 0 ď γ ă 2

3 as long as this is sufficiently long. A power law in c(t) = c0a
n

without an explicit form for G gives

ρ̇

ρ
+ 3

ȧ

a

(
p

ρc2
+ 1
)

=
˙ρa3γ

ρa3γ
(7.86)
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Putting G on the other side it can be integrated to give

G =
3kc2

0na
2n´2

4π(2n´ 2 + 3γ)ρ
+

C

ρa3γ
2n+ 3γ ‰ 2

G =
3kc2

0n lna
4πρa3γ

+
C

ρa3γ
2n+ 3γ = 2

(7.87)

In order for the curvature term to dominate we need n ď 1
2(2 ´ 3γ). This solves

both the flatness and horizon problem. Further, if an explicit G(t) is introduced the
cosmological constant comes along, ρÑ ρ+ ρΛ with the usual pΛ = ´ρΛc

2 (further
is explained in 3.7. Interestingly, in the simplest asymptotic safety approach for gravity
we will make use of the runnings of G and Λ as well. Note, here the cosmological
constant is assumed to be constant. Solving this gives again the need of a decrease of
c, even faster than to solve the flatness and horizon problem alone, n ă ´3

2γ. With
w = γ ´ 1 in matter and radiation dominated era the problems would be solved for
(n ď ´0.5 for matter, n ď ´1 for radiation without cosmological constant n ď ´1.5
for matter, n ď ´2 for radiation and with cosmological constant).

7.9 The Wavefunction of the Universe

Where does the wavefunction come from? I will follow Hawking’s and Hertog’s work
[27].
The wavefunction satisfies a second order differential equation, the Wheeler de Witt
equation which is informally speaking the Schrödinger equation of the universe. The
equation is solved on an infinite dimensional hyperbolic manifold (superspace), the
space of all 3-metrics and matter field configurations20.
In the easiest setting it might be visualised as follows:

BΨ

Bt
= ´iHt = ´i

(
´
B2

Bx2
+ V

)
Ψ = ´i

ż
(
´

δ2

(δφ)2
+m2φ2

)
d3xΨ(x) (7.88)

which is the wave function of the Wheeler de Witt equation

0 = HΨ (7.89)

where H is the Hamiltonian, for example, given by

´Gijkl
δ2

δhijδhkl
´
?
h

(
R+ 2Λ+

8πTab
m2
p

)
(7.90)

where G is the metric on the superspace, the wavefunction Ψ dependent on the 3-
metric hij and the scalar field φ, the 3-curvature dependent on h.
As until now it hasn’t been possible to solve it, the space is restricted to a finite subspace
(minisuperspace) already explained in the thesis 3.6.2. It follows a semi-classical ap-
proximation of the path integral.

„ N0 =
ÿ

i

Aie
´Bi (7.91)

20Hence, if one knows Ψ for small 3-surfaces, i.e. early times, we can solve the equation as Cauchy
problem for larger surfaces, i.e. late times.
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where Bi are the classical actions and the coefficients are the determinants of the small
fluctuations of the classical solutions.
The Euclidean action given by Hawking and Hartle for FRW with cosmological con-
stant Λ = 8πV

m2
p

is

IE =
3πmp

4

ż

dη

((
da

dη

)2

´ a2 +
Λa4

3

)
(7.92)

with the boundary condition a(0) = a and φ(0) = φ. A solution for the scale factor
a(τ) = cosHτ

H(φ)
gives the wavefunction of

Ψ0 „ e
3m4
p

16V(φ) (7.93)

The probability of a certain φ =const. and corresponding a =

b

3m2
p

8πV is given by the
amplitude of the wavefunction.

P „ |Ψ0|
2
„ e

3m4
p

8V (7.94)

It has a maximum at V Ñ 0 giving a probability for a universe in a state with large
φ and a long inflation period isn’t very likely. It has been argued that there could be
a change to a minus sign (due to the Wick rotation from Lorentzian to Euclidean the
minus sign disappears to iIÑ ´I). One would then have a probability of

P „ e´2|IE| = e´
3m4
p

8V (7.95)

Hawking concludes that there are only two positive definite types of metrics: compact
metrics and matter fields that are regular on them or non-compact asymptotic metrics
of maximally symmetric spaces and matter fields that are asymptotically 0 (the latter
is the vacuum state which we don’t look for).
For an FRW universe, with a first assumed conformally invariant scalar field constant
on 3-spheres, gives a solution of[27]

1
2

(
1
ap

B

Ba

(
ap

B

Ba

)
´ a2

´
B2

Bχ2
+ χ2

)
Ψ(a,χ) = 0 (7.96)

where χ =
b

3
π

mp

aφ
and N is the lapse function with the metric in conformal coordinates

ds2 =
2

3πm2
p

(
N2(η)dη2 + a2(η)dΩ2

s

)
(7.97)

representing a spatially closed universe of radius a which is regular at a Ñ 0 Due
to conformal invariance we could substitute in Ψ(a,χ) = C(a)f(χ) which gives a
harmonic oscillator type eigenvalue equation (n = 0 is the ground state).

1
2

(
´
d2

dχ2

)
f =

(
n+

1
2

)
f (7.98)
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However, the C(a) part would give an almost matter free universe. They realised that
one needs a non-conformally invariant field. The simplest model (later they also add
effective R2 terms by quantum corrections) is given by

1
2

(
1
ap

B

Ba

(
ap

B

Ba

)
´ a2

´
B2

a2Bφ2
+ a4m2φ2

)
Ψ(a,φ) = 0 (7.99)

In the (a,φ) plane the wavefunction can be analysed by rewriting it to

x = a sinhφ y = a coshφ (7.100)

giving the light cone at a = 0,φ = ˘∞. When we know the solution of this equation
we can solve the wavefunction with the boundary condition for largeφ (semi-classical
approximation). The positive energy density of the potential in the action behaves like
a positive cosmological constant. The solutions give large φ and a long inflation pe-
riod as well as oscillations of expansions and contractions of the universe.
Interestingly, in [32] they argue that the probability has to be multiplied by e3N to
account for the e-foldings in slow roll inflation. This is similar to the solution ansatz
of volume weighting in eternal inflation’s measure problem. They also combine their
result with the landscape scenario in string theory giving an arena for the many possi-
ble universes with, for example, different values for the cosmological constant21. The
no-boundary proposal and wavefunction of the universe together with slow-roll in-
flation can explain why we are in the universe we observe since it acts as a selection
principle. Here the authors the calculate the probability on our universe’s past light
cone with the probability of all information in the Hubble volume e3N on a surface that
fits our observations (spacelike at the present time). The intersections of the Hubble
volume and this surface give the right terms, because those spacetimes would have
lasted long enough for inflation to occur. Basically, as observers we are part of the
universe we observe and we need to take into account the probability that we have
evolved through the Hubble volume.

7.10 The Top-Down Approach

The wavefunction together with the no-boundary proposal gives the probabilities of
entire classical history trajectories. However, we need to account for the fact that we
can only receive information dependent on a part of our past light cone. The so-called
top-down probabilities are the sum of the ones that represent our information at least
once and the ones that are the possible locations of our light cone in them.
Top-down along with anthropic reasoning basically changes conditional probability of
a certain history of the universe U given a Hamiltonian H and wavefunction Ψ with a

21The landscapes in modern string theory is the set of all possible false vacua as there are many choices
for possible Calabi-Yau spaces. The number arises due to the geometry of the hidden dimensions. In
higher dimensional GR we find multiple solutions that all give one vacuum state. It is expected to be a
very large number. Weinberg used this to explain the low value of the cosmological constant we observe
(Polchinski, ’Dualities of Fields and Strings’)
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Figure 7.2: Halliwell, ’Scalar fields in cosmology with an exponential potential’, 1986.
The αφ plane shows the autonomous system of the equation of motions and constraints of

the potential V = V0e
2
?
πλ

?
3mp

φ
and metric ds2 =

3m2
p

4πV0
(´N(t)2dt2 + e2α(t)dΩ2(k)). Halliwell

presented the solutions for various λ ą 0. λ = 0 (left) is the massless φ and cosmological
constant state (on the α-axis de Sitter). A is the attractor lying on flat space, k = 0. Inflation
is guaranteed. Deviating to 0 ă λ ă

?
12 gives a smooth distortion, but still the same kind of

evolution, now powerlaw inflation. He goes further and present larger values, where the the
horizon and later the flatness problem cannot be solved anymore, hence, don’t give inflationary
solutions.

set of constraints C (such as flatness),

p(U|C,HΨ) =
p(UC|HΨ)

p(C|H,Ψ)
(7.101)

to p(U|L,H,Ψ) where L are all the conditions for making life possible.
(to be continued)

7.11 Dark Energy - Attractor in Quintessence

As mentioned in 3.7 the density of a possible scalar field can slowly decrease and
might dominate again the universe’s energy content after radiation/matter dominated
era.[61] gives a toy example of a potential of type V „ 8πG

φp
giving a power law

inflation of a „ tn and a field of the form (substituting into the Friedmann equation
tq gives q = 2

2+p to cancel the variable) φ „ t
2

2+p .

The ratio of the field’s and today’s density would then be ρφ
ρ
„ t

4
2+p . The cosmological

constant corresponds to p Ñ 0 (ρ „ t´2). A positive p increases the field value
and either leads to ρφ Ñ 0 (classical Minkowski space), ρφ Ñ const. (de Sitter) or
ρφ ă 0 (Big Crunch). It is also possible to construct attractor solutions (Luchin &
Matarreste 1985, Halliwell 1986) where small deviations from the initial conditions
still let the system tend to the same state near the attractor 7.2.

7.12 Quantum Gravity in Brief

One can basically distinguish between the covariant, canonical and sum-over-histories
approaches to quantise gravity [67].
The latter uses the Feynman functional integral from quantum field theory. Euclidean

161



quantum geometry began with Misner, Wheeler and Hawking in the 50/60s.
In the canonical treatment there is no background dependence and gravity is treated as
a quantum theory where the Hamiltonian carries the representations of the operators.
As non-perturbative theory it should be well defined at all scales. It probably started
with Dirac’s treatment in the 50s, followed by Deser, Misner and Ashtekar in the 60s-
80s, especially with the introduction of the new variables (see 3.6.3). The Wheeler de
Witt equation (where no background metric was assumed, merely a spacetime mani-
fold) seemed promising, but was ill-defined and suffered from its failure of transition
to the low energy behaviour. LQG arose in the 80s. ’t Hooft and Veltman introduced
a proper treatment of the background field method that retains the symmetries of the
path integral in gravity.
Lastly, the covariant approach treats gravity as quantum field theory of fluctuations
that are added upon a fixed (flat) background metric. It goes back to Fierz and Pauli
in the 30s, the Feynman rules for GR by de Witt and Feynman in the 60s. The pertur-
batively non-renormalisable theory of GR was proven by t’Hooft, Veltmann [92], Deser
et al in the 70s. Gauge fixing and introduction of ghost fields in GR were tackled. (Su-
per)string theory and modifications of GR (such as HD gravity) followed. Analogue to
QED only fluctuations are quantised on a fixed background where the operators are
defined, it is background dependent and perturbative. Unfortunately, diffeomorphism
invariance is violated and due to its non-renormalisability it cannot be a fundamental
theory .
in order:

year authors importance
1930 Rosenfeld diffeomorphism invariance
1938 Heisenberg dimension of G is problematic
1952 (Rosenfeld, Fierz, Pauli) Gupta flat-space quantisation,

. . gravitational self-energy γ,e´

1957 (Feynman) Misner Feynman rules for GR, H principle
1959 Arnowit, Deser, Misner ADM(=Hamiltonian) formalism
1967 de Witt Wheeler-DeWitt equation
1970 Zumino GR as LE limit

1971/73 ’t Hooft, Veltmann Yang Mills is renormalisable, GR has non-renormalisable divergencies
1974 Kadanoff, Wilson UV FP in scalar field theory
1976 Weinberg Asymptotic safety as QG approach
1977 Stelle quadratic Langrangian is renormalisable, but non-unitary
1979 Weinberg nontrivial FP in gravity for d = 2 + ε
1983 Hawking, Hartle Wavefunction of the universe
1986 Goroff, Sagnotti two-loop GR divergencies

Ashtekar new variables based on connection
1993 Wetterich Wetterich equation as exact formula for FRGE

1994/96 Wetterich, Reuter FRG for general gauge theories
1998-today matter, HD terms... FP found

Table 7.3: QG’s beginning

1. ’Zur Quantelung der Wellenfelder’

2. ’Die Grenzen der Anwendbarkeit der bisherigen Quantentheorie’

3. ’Quantization of Einstein’s gravitational field: general treatment’: a fictitious
space, the flat space, is introduced such that fluctuations are the difference of the
metric and the flat Minkowski metric, hµν = gµν ´ ηµν (covariant approach).
As for the EM field problems arise due to gauge invariance. (a)

4. ’Feynman quantization of general relativity’: the integration is over all field his-
tories and the Einstein action in the exponential. It is emphasised to account for
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gauge invariance in the integral and the vanishing of the quantum Hamiltonian.
(b)

5. ’Dynamical Structure and Definition of Energy in General Relativity’

6. ’Quantum theory of gravity. I. The canonical theory’: (canonical approach) Lat-
erd developed by Misner.

7. ’Effective Lagrangians And Broken Symmetries’

8. ’Regularization and renormalization of gauge fields’, ’Renormalizable Lagrangians
for massive Yang-Mills fields’, ’One-loop divergencies in the theory of gravitation’

9. ’The renormalization group and the ε expansion’

10. ’Critical Phenomena for Field Theorists’

11. ’Renormalization of higher-derivative quantum gravity’: The Lagrangian L =
αR+βR2 +γRµνRµν is renormalisable for certain values, but for those also not
well-defined and unitary. Negative energy modes destabilise.

12. ’Ultraviolet divergences in quantum theories of gravitation’

13. ’Wave function of the universe’, see also 7.9.

14. ’The ultraviolet behaviour of Einstein gravity’

15. ’New variables for classical and quantum gravity’

16. ’Exact evolution equation for the effective potential’

17. ’Effective average action for gauge theories and exact evolution equations’, ’Non-
perturbative evolution equation for quantum gravity’

One may also classify three groups according to the ’quantisation approach’:

1. quantise only matter fields and leave the (curved) background classical, also
called semi-classical approach

2. quantise matter fields and the gravitational field

3. quantise something else which induces gravity and matter (and also unify all
theories)

7.12.1 Linearised Gravity

Side calculations of ??.
The metric is split into the background (here Minkowksi,more general any background
metric, general gµν) and the fluctuation part

gµν = ηµν + κhµν, gµνg
νρ = δρµ (7.102)
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The inverse contains infinite many power terms in κ and h.

gµν = ηµν ´ κhµν + κ2hµρhνρ + ... (7.103)

which gives

?
´g = 1 +

hρρ

2
´
hρσh

σ
ρ

4
+

(hρρ)
2

8
+ ...

Rµναβ =
κ

2
(Bµαhνβ ´ Bνβh

µα
´ Bναhµβ + Bνβhµα)

Rµν =
κ

2
(Bρµh

ρ
ν + Bρνh

ρ
µ ´ Bµνh

ρ
ρ ´ η

µν
BµBνhµν)

R = κ(BρBσh
ρσ
´ �hρρ)

(7.104)

Putting this into the usual conservation equation gives

0 = Bµ(Rµν ´
1
2
ηµνR) =

κ

2
(Bρ�hρν + Bρνµh

µρ
´ �Bµhµν ´ �Bνh

ρ
ρ

´ Bνρσh
ρσ + Bµ�hρρ) =

κ2

4
B
µTµν

(7.105)

Collecting terms, Xµναβhαβ = κ
2 Tµν. Adding gauge invariance

x̂µ = xµ + κζµ(x), (7.106)

ĝ = η+ κĥ, ĥµν = hµν ´ Bµζν ´ Bνζµ (7.107)

The Ricci scalar is invariant. When we choose the harmonic gauge we arrive at the
same result we arrived in the GR module, Bµhµν ´

1
2Bνh

ρ
ρ = 0.

�hµν ´
1
2
�hρρηµν =

´κ

2
Tµν (7.108)

a wave equation. A static point mass Tµν = diag(M, 0, 0, 0)δ(x) gives a fluctuation
metric of „ κM

32πdiag(1, 1, 1, 1)δ(x) and gravitational waves for Tµν = 0 are of the
form „ (εµνe

´ipx + ε˚µνe
ipx.

Linearising around a background metric ĝµν under infinitesimal transformation x 1µ =
xµ ´ ζµ, covariant derivative ’;’,

gµν Ñ ĝµν + ĝ(µαζ
α
;ν) + κhνν + κhµν;αζ

α + κh(µαζ
α
;ν) (7.109)

with the gauge transform of the fluctuation metric

hµν Ñ hµν +

(
1
κ
ĝ(µα + h(µα)ζ

α
;̂ν)

)
+ ζαhµν;̂α (7.110)

and the background transformation itself is given by

ĝµν Ñ ĝµν + ĝ(µαζ
α
;̂ν) (7.111)

hµν Ñ hµνh(µαζ
α
;̂ν) + hµν;̂αζ

α (7.112)
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I define hρρ = h and linearise the action of EH without the cosmological constant and
a simple scalar field which could be an inflaton field (see also Donoghue, 1995).

S =

ż

d4x
?
´g

(
2R
κ2

+
1
2
gµνBµφBνφ´

1
2
m2φ2

)
(7.113)

where anywhere else we raise and lower with the background metric ĝ. Let us substi-
tute the results from above and order the action according to the constant background
part, the usual unperturbed term that vanishes on-shell, the quadratic part and the
gravitational interaction (proportional to κ). The massive scalar is φ = φ̂+φ 1, again
background plus fluctuation.

SÑ

ż

d4x
a

´ĝ

(
2
κ
R̂+

1
2
gµνBµφ̂Bνφ̂´

1
2
m2φ̂2

)
(7.114)

´ 2hµν

(
R̂µν ´

1
2
R̂ĝµν

)
´

1
2
hµν

(
Bµφ̂Bνφ̂´

1
2
ĝµνBρφ̂φ̂

ρ

)
+
(
φ̂ ˆ;ν;ν+m2φ̂

)
φ 1

(7.115)

+ 2
(
BρhµνBγhαβf1 + hµνf2 +

1
2
φ 1;̂µφ

1
;̂ν ´

1
2
m2φ 12 + hµνφ

1
;̂ρf3

)
(7.116)

+ ... (7.117)

with f1 and f2, tensors Tµναβργ1 (ĝ, φ̂) and Tµναβ2 (ĝ, φ̂), Tρµν3 . Following Donoghue
we proceed with gauge fixing and need to introduce Faddeev Popov ghosts.

Lgf =
1
2

a

´ĝCµC
µ, Cµ = h;̂ν

µν ´
1
2
hρρ;̂µ ´ Bµφ̂φ

1 (7.118)

Lghost =
?
´gηµ(gµν ´ Rµν ´ BµφBνφ)η

ν (7.119)

where η is the fermionic field. The final Lagrangian is the sum of all.

Faddeev Popov Ghosts

The background field method introduced by DeWitt (1967) and improved further by
’t Hooft and others follows as mentioned, including the introduction of gauge fixing
and ghosts22. Taking scalar QED as an example we arrive at the issue that we integrate
over all configurations, also the ones that are related by a gauge transformation.

L = φ;µ(φ
;µ)˚ ´

1
4
FµνF

µν, ;= Dµ = Bµ + ieAµ (7.120)

Aµ Ñ Aµ + Bµθ = A(θ)
µ (7.121)

Hence, we would integrate over an infinite number of configuration copies. We need
to account for the gauge fixing. With the Faddeev Popov trick we fix the correct in-
tegration measure. The trick is to insert the following two identity integrals into Z.

22Already early on Feynman proposed the idea of artificial particles to make the optical theorem valid
in GR. The optical theorem is an implication of unitarity.
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f(Aµ) = F(x) is some gauge fixing condition

1 =
ż

Dθδp(f(A(θ)
µ )´ F)∆(A) (7.122)

∆(A) = det
Bf

Bθ
(7.123)

1 = N(ζ)

ż

DFe´
i

2ζ

ş

d4xF(x)2
(7.124)

Now we perform integration over θ and F(x),

Z =
1
N

ż

A�∆(A)eiS´
i

2ζ

ş

d4xf(Aµ)
2

(7.125)

with the Faddeev Popov determinant ∆(A) and the action minus the gauge fixing term
in the exponent. We need to introduce ghost fields which are artificial and no physical
states and then we can split the integration over physically distinct configurations
and over gauge orbits. In the case of ED we could actually drop the term as Bf

Bθ
is

independent of Aµ, but they are necessary in non-abelian theories and obviously in
GR. We introduce the ghost fields C,C by

det
Bf

Bθ
=

ż

DCDCei
ş

d4xC Bf
BθC (7.126)

with the gauge fixing term Lgf = 1
2CµC

µ. For example, in the de Donder gauge
„ (h;̂µ

µν ´
1
2h;̂ν)

2, where it is transformed as Cµ Ñ Cµ + ĝµνζ
ν;̂ρ
;̂ρ + R̂µνζ

ν. Since we
have a gauge fixing vector we need fermionic vectors η in GR (fermionic scalars for
usual gauge theories such as Yang Mills) as Faddeev Popov fields. Reason is that we
need to cancel the bosonic vector field’s loop diagrams23. Now we can rewrite 7.125
with that transformation[15]

det
BCν

Bζµ
=

ż

DηαDη̂βei
ş

d4x
?
´g ˆetaµ(ĝµνD̂2+R̂µν)η

ν

(7.127)

Z =

ż

DhµνDηαDη̂βDφ(L (h) +Lgf(h) +Lghost(η, η̂,h) +Lmat) (7.128)

23The determinant can be rewritten in terms of a Grassmann integration,
ş

e´θ
TMηdθdη = detM

for an nxn matrix where θ,η should be interpreted as anti-commuting complex ghost fields. Ghost as
fermions have the advantage of having the opposite sign in the loops such that they cancel the redun-
dancies. Note that the result of a Grassmann integral is invariant leads to the fact that the Grassmann
integration measure transforms as the inverse (!) of the Jacobian (for normal numbers it is simply the
Jacobian). Simply put, bosonic Gaussian integral „ (detA)´

1
2 , fermionic integral „ detA (without 0

modes).
ż

DψDΨe´S =

ż

ź

i

daidaie
´
ř

i,j

ş

dtηjajAζiai =

ż

ź

i

daidaie
´
ř

i λiaiai =
ÿ

i

λi = detA

for the modesΨ =
ÿ

i

aiζi,Ψ =
ÿ

i

aiηi,Aζi = ληi

and the Grassmann integration
ż

dθθ = 1,
ż

dθ1 = 0
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if we introduce matter fields as well. The ghosts violate the spin-statistics theorem (in
normal gauge theories they have fermionic statistics but are spinless), but as they are
not physical the theory is still well-defined.

7.12.2 Quantum Corrected Newton Potential

Useful integrals from real space to momentum space are

ż

d3q

(2π)3

eiqr

|q|
2 =

1
4πr

ż

d3q

(2π)3

eiqr

|q|
=

1
2π2r2

ż

d3q

(2π)3
eiqr lnq2 = ´

1
2πr3

(7.129)

The Feynman rules for gravity are 7.3 with the massless graviton propagator given by

Figure 7.3: Feynman rules for gravity

Pαβµν = 1
2(η

αµηβν + ηβµηαν ´ ηαβηµν). Donoghue linearises gravity around flat
Minkowski and uses the harmonic gauge. κ2 = 32πG,

τµν1 (k,k 1,m) = ´
iκ

2

(
kµk 1ν + kνk 1µ ´ ηµν(k.k 1 ´m2)

)
(7.130)

τσρµν2 (k,k 1,m) = iκ2((IσραδIµνβδ ´
1
4
(ησρIµναβ + ηµνIσραβ))(kαk

1
β + k 1αkβ)

(7.131)

´
1
2
(Iσρµν ´

1
2
ησρηµν(k.k 1 ´m2)) (7.132)

Iαβγδ =
1
2
(ηαγηβδ + ηαδηβγ) (7.133)

24 A useful identity for below is

PγδσρPαβµντ
σρµν(k,k 1,m) = τγδαβ(k,k 1,m) (7.134)

24See also ’Gravitational interaction to one loop in effective quantum gravity’, 1996.
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The tree level (0) is given by

iM1(q) = τ
µν
1 (k1,k2,m1)

iPµναβ

q2
ταβ2 (k3,k4,m2), q = k1´ k2 = k4´ k3 (7.135)

which can be solved with 7.129 to give

M1(q) = ´
4πGm1m2

q2
(7.136)

He continues with calculating the non-analytic part of the corrected potential given
by the diagrams (1) 7.4, using the Feynman rules and integrating over the momenta
k 1,k2 and the four propagators (mathematically complex to calculate, see [15]), tak-
ing the non-relativistic limit and again Fourier transforming 7.129, they contribute
´47

3
m1m2G

2

πr3 . Further, he treats triangle diagrams ((2) and the momenta swapped)
over three propagators whose result adds to the non-analytic part and the relativistic
term,´4G2m1m2(m1+m2)

3πr2 + 28m1m2G
2

πr3 . I will give an example for calculating the ’seagull’
(3) diagram. The symmetry factor is 2 as we can exchange the two virtual particles
and get the same diagram.

iMseagull =
1
2

ż

d4k 1

(2π)4
ταβγδ2 (k1,k2,m1)

iPαβµν

(k 1 + q)2
τσρµν2 (k3,k4,m2)

iPγδσρ

k 12
(7.137)

Using 7.134 this can be rewritten

´
1
2

ż

d4k 1

(2π)4
ταβγδ2 (k1,k2,m1)

1
(k 1 + q)2k 12

τ2γδαβ(k3,k4,m2) (7.138)

substituting the formulae for τ and integrating
ş

d4k 1

(2π)4
1

(k 1+q)2k 12
= ´2i lnq2

32π2 gives

M = 44G2m1m2 lnq2 (7.139)

The seagull only adds to the non-analytic part, ´22m1m2G
2

πr3 , after Fourier transforming
again. Then, he proceeds with vertex corrections such as (4) that contribute again to
both correction terms, G

2m1m2(m1+m2)
r2 + 7m1m2G

2

πr3 and the two vacuum polarisation
diagrams (5) (see also Duff, 1974), ´43m1m2G

2

30πr3
25

Adding all terms gives the quantum corrected potential

V(r) = ´
Gm1m2

r

(
1 +

3G(m1 +m2)

r
+

41G h

10πr2

)
(7.140)

7.13 ASG

7.13.1 Example

I will derive the effective action for a simple action such as S0 = 1
2

ş

d4x(BµφB
µφ ´

m2φ2 in four dimensions and first assuming non-Euclidean.

25The vacuum polarisation tensor is given by the effective Lagrangian „ logq2(aR2 + bRµνµν derived
by ’t Hooft and Veltman [29].
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Figure 7.4: gravitational Feynman diagrams following Donoghue’s treatment

The S-matrix is related to the n-point Green function via LSZ

Gn(x1, ..., xn) = x0| Tφ̂(x1)...φ̂(xn) |0y = (´i)n
δ

δJ(x1)
...

δ

δJ(xn)
Z[J]|J=0 (7.141)

Hence,

Z[J] =
∞
ÿ

n=0

in

n!

ż

d4x1...d4xnJ(x1)...J(xn)Gn (7.142)

We also know that Z can be calculated from the path integral, where D is the integra-
tion over all functionals

Z[J] „

ż

DφeiS[φ]+i
ş

d4xJ(x)φ(x), Z0 = e´
i
2

ş

d4xd4x 1J(x)DF(x´x
1)J(y) (7.143)

The Schwinger functional can be calculated

Z[J] = eiW[J]
Ñ W[J] = ´i lnZ[J] (7.144)

that generates all connected diagrams

Gn(x1, ..., xn)connected = i(´i)n
δ

δJ(x1)
...

δ

δJ(xn)
W[J]|J=0 (7.145)
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Similarly, from the connected diagrams we can infer W. We proceed with the Legen-
dre transform of W to arrive at the effective average action.

δW[J]

δJ(x)
=
x0| φ̂(x) |0y
ă 0 |0y ą

(7.146)

which we define asφ. Obviously, one can also derive it directly from´ i
Z[J]

δZ[J]
δJ(x)

. From

φ = φ[J] we get the expression for the source current, J = J[φ], which leads us to the
effective action

Γ [φ] =W[J[φ]]´

ż

d4xJ(x)φ(x) (7.147)

which is the classical action (tree level) plus the corrections (loops), Γ = S+ Γ1 + ....
It is the generating functional of 1PI Green’s functions. We have ’solved’ the theory.
Note the equations of motion can be calculated by δΓ

δφ=´J
. In asymptotic safety we

mostly calculate in the Euclidean setting SÑ SE, tÑ ´iτ (Wick rotation), where the
computations and the interpretation as probability density become clearer. The steps
are similar.

Z[J] = eW[J] =

ż

Dφe´SE[φ]+
ş

dxφ(x)J(x)

GEn(x1, ..., xn) =
δ

δJ(x1)
....Z[J]|J=0

δW

δJ(x)
= φ(x), J = J(φ)

Γ =

ż

d4xφ(x)J[φ(x)]´W[J[φ]]

(7.148)

Dimensional analysis gives [x] = ´1, [d4x] = ´4, [Bµ] = 1 a mass dimension of [φ] =
1.
A typical truncation could be, for example, Z symmetry, φÑ ´φ.

S =

ż

d4x

(
1
2
BµφBµφ+ c1φ

2 + c2φ
4 + ... + d1φ��φ+ ...

)
(7.149)

which is perturbatively renormalisable for dimensionless c2 ([c1] = 2) and up to that
term only. In higher dimensions, d ą 4, we would have [φ] = 1

2(d´ 2) and couplings
of dimension [c1] = d´ 2(d2 ´ 1), [c2]d´ 4(d2 ´ 1)...d´ n(d2 ´ 1) for φn and [d1] =
d´2(d2 ´1)´4.... In four dimensions, however, we cannot add higher than quadratic
terms. The truncation can be written in the form

S =
ÿ

i

giOi(φ) (7.150)

where each operator (here under the reflection symmetry constraint) comes with a
coupling. Importantly, in ASG those couplings are redefined to become running ones
and thus, dimensionless.
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7.13.2 ’Derivation’ ERGE

As the Wetterich equation [87] is used in almost all calculations in asymptotic safety I
will derive it in the following and point out the most important properties (I will leave
out the gauge and ghost fixing part).
First, have a look at the usual Legendre transform. In a Euclidean setting26 for a simple
scalar field φ we should first calculate the generating functional of connected Green
functions W[J], defined from the path integral

e´W[J] =

ż

Dφe´S[φ]´
ş

Jφ (7.151)

The Legendre transform which generates the 1PI Green functions is given by

Γ =W[J]´

ż

Jφ, φ =ă φ ą=
δW

δJ
(7.152)

In order to get the renormalisation group flow we take

W ÑWk

SÑ S+ ∆Sk, ∆Sk =
1
2

ż

ddpφRk(p
2)φ

Γ Ñ Γk =Wk ´

ż

φJ´ ∆Sk

(7.153)

with a suitable chosen cutoff function and J is given by δWk

δφ
Ø J = J(φ). We also

know that the effective average action can be written as the sum of couplings and
operators,

Γk =
ÿ

giOi (7.154)

where the couplings depend on the momentum and the operators are terms of the
field which should be the tree level and all loops.

Γ (1) = S+
1
2

Tr
"

log
δ2S

δφδφ

*

Ø Γ
(1)
k = S+

1
2

Tr
"

log
δ2S 1

δφδφ

*

(7.155)

where S 1 = S + ∆Sk. In the expression itself the cutoff term cancels, but needs to be
evaluated in the derivative.

Γ
(1)
k = S+

1
2

Tr
"

log
(
δ2S

δφδφ
+ Rk

)*
(7.156)

The Wetterich equation is now motivated by taking the derivative wrt the RG time
(defined by δt = kδk) of the effective 1-loop action

Γ̇k =
1
2

Tr

(
1

δ2S
δφδφ

+ Rk

)
Ṙk (7.157)

26Based on AQFT notes.
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Along with 7.154, Γ̇k =
ř

i βiOi, where we define the β-functions as

β(gi) = ġi (7.158)

we can set both expressions equal and find ALL 1-loop β-functions that already tell
us a lot about teh theory’s behaviour. However, we still haven’t derives the Wetterich
expression which is an exact equation in Γk only. It turns out that we can replace
SÑ Γk.

Γ̇k = Ẇk ´ ˙∆Sk =
1
2

Trtă φφ ąuṘk ´
1
2

Trtă φ ąă φ ąuṘk (7.159)

which can be rewritten as

Γ̇k =
1
2

Tr

#

1
δ2Γk
δφδφ

+ Rk

+

(7.160)

where I again used φ = δWk

δJ
and

δ2(Γk + ∆Sk)

δφδφ
= ´

(
δ2Wk

δJδJ

)2

(7.161)

and obviously J = ´δ(Γk+∆Sk)
δφ

.
This is the beauty of the Wetterich equation. It is exact (although it cannot be solved
exactly) and only contains the effective average action.

7.13.3 Example β-functions

Take a simple Lagrangian of L = 1
2δµφδµφ + Vk(φ

2), giving the effective average
action, Γk =

ş

ddxL . The second variation wrt the field (I assume a constant scalar
field) and suitable boundary conditions plus the cutoff is given by

δ2Γk

δφδφ
+ Rk = ´δ2 + 2V 1k + 4φ2V 2k + Rk(´δ

2) (7.162)

and the derivative wrt RG time using the Wetterich equation

Γ̇k =
1
2

Tr
"

Ṙk(´δ
2)

´δ2 + Rk(´δ2) + 2V 1k + 4φ2V 2k

*

(7.163)

The trace is the integration over all space and momenta
ş

ddx
ş

ddp
(2π)d . Using a spherical

transformation (idea taken from Percacci, same approach as in QED regularisation
problems), r = |p|

2, the expression inside the trace, call it T(´δ2) can be rewritten as

Ad

ż

ddxQd
2
(T) (7.164)

Ad =
1

2d+1πd
V0(Sd´1)Γ

(
d

2

)
=

1
2

2
(2π)d

2π
d
2

Γ(d2 )
Γ

(
d

2

)
= (4π)´

d
2 (7.165)

Qd
2
=

1
Γ(d2 )

ż ∞
0
drrn´1T(r), r = |p|

2 (7.166)
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where n is the order of the expansion, V =
řN
n=1 g2nφ

2n. Both sides now have the
same volume element and the LHS reduces to the RG time derivative of the potential
only.

V̇k =
1
2
AdQd

2

(
Ṙk

´δ2 + Rk(´δ2) + 2V 1k + 4φ2V 2k

)
(7.167)

The β-functions of the couplings (here easily computed from the form of the potential,
g2n = 1

n!
BnV
B(φ2)n

|φ=0) are given by

β2n = ˙g2n =
1
n!

Bn

B(φ2)n
V̇k

∣∣∣∣
0

(7.168)

with V̇k given by 7.167. To simplify the calculations I choose the potential with the
first two terms only, so Vk = g2φ

2 + g4φ
4. Also, recall that the critical exponents and

the fixed point are calculated in the space of dimensionless couplings, here

ĝ2n = k´d+n(d´2) (7.169)

to account for the usual mass dimensions to cancel the d spacetime dimensions and
for each order the φ terms. Hence, the β-functions are of the form

ĝ2n = (´d+ n(d´ 2))ĝ2n ´ k
´d+n(d´2)β2n (7.170)

Since it has been calculated for 3 dimensions (Wilson-Fisher FP) I will calculate it for
4 dimensions.

g2 =
BV

B(φ2)
|0,g4 =

B2V

B(φ2)2
(7.171)

β2 = ġ2 =
B

B(φ2)
V̇k|0 = ´

12 ¨AdQd
2
g4

2

(
Ṙk

(´δ2 + Rk(´δ2) + 2g2)2

)
(7.172)

β4 = ġ4 =
B2

B(φ2)2
V̇k|0 =

144 ¨AdQd
2
g2

4

2

(
Ṙk

(´δ2 + Rk(´δ2) + 2g2)3

)
(7.173)

(other term vanishes as the couplings for g6... vanish. Now we substitute those into
7.170 with d = 4

˙̂g2 = ´2ĝ2 ´ 6A4Q2g4
1
k2

(
Ṙk

(´δ2 + Rk(´δ2) + 2g2)2

)
˙̂g4 = 0´ β4 = 72A4Q2g

2
4

(
Ṙk

(´δ2 + Rk(´δ2) + 2g2)3

) (7.174)

The couplings can be expressed in terms of their dimensionless couplings, ĝ2 = k´2g2

and ĝ4 = g4.27 which is in the case of 4 dimensions g4 Ñ ĝ4. Again following Percacci,
Litim’s cutoff is used, Rk = (k2´r)θ(k2´r), recall r = |p|

2 such that Ṙk = 2k2θ(k2´r)

27Note for 3 dimensions we have ĝ2 = k´2g2, ĝ4 = k´1g4.
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and ´δ2 +Rk(´δ
2)Ñ k2. Using the formulae 7.164 and with the cutoff constraint at

k2 and Γ(n) = (n´ 1)!. For Percacci Γ(5
2) = (5

2 ´ 1)! = 3
2 ! = 4

?
π

42¨2 results in

˙̂g2 = ´2ĝ2 ´
2ĝ4

π2(1 + 2ĝ2)2

˙̂g4 = ´ĝ4 +
24ĝ4

π2(1 + 2ĝ2)3

(7.175)

which give a GFP and a NGFP at ĝ2 = ´ 1
26 , ĝ4 = 72π2

2197 . If we calculate the same in four
dimensions we arrive at the problem of the following coupled system of equations

˙̂g2 = ´2ĝ2 ´
3ĝ4

8π2(1 + 2ĝ2)2

˙̂g4 =
9ĝ4

2π2(1 + 2ĝ2)3

(7.176)

A GFP is given for ĝ2 = ĝ4 = 0 but we cannot find another FP.28

In order to analyse its stability we calculate the stability matrix around the fixed point
ĝ˚,

M˚ =

(
Bβ̂i

Bĝj

)
|˚ =

(
´2 + 4ĝ4

π2(1+2ĝ2)3 ´ 2
π2(1+2ĝ2)2

´
144ĝ2

4
π2(1+2ĝ2)4 ´1 + 48ĝ4

π2(1+2ĝ2)3

)
|˚ =

(
´5

3 ´36π2

169
´ 169

72π2 1

)
(7.177)

Diagonalising gives the critical exponents (the eigenvalues times ´1), θ1 = 1.8425
and θ2 = ´1.1759, hence one is relevant and one is irrelevant and the dimension of
the critical surface is 1.

7.13.4 Effective potential

I stated that the RG improvement is similar to the treatment of the effective potential
in scalar field theory. Here is a short explanation of the Weinberg-Coleman potential
type29. Take the Lagrangian

L =
1
2
Bµφ

2
´

1
2
m2φ2

´
λ

4!
φ4 +

a

2
Bµφ

2
´
b

2
φ2
´
c

4!
φ4 (7.178)

which is symmetric under φÑ ´φ. The importance of the last three terms will come
into a play in a bit and the coefficients will be determined. For λ ą 0 we know that for
m2 ă 0 spontaneous symmetry breaking occurs since there isn’t only one (classical)
vacuum state at 0 anymore.
The effective potential which is the classical potential (unbroken) plus some quantum
corrected term is calculated from the partition function Z = eiW . We will see that
the quantum fluctuation encoded in the additional term arises from the vacuum. Let
us consider the case of m = 0 i.e. right between the unbroken and broken case. We

28See also Critical exponents in 3.99 dimensions, Wilson& Fisher.
29Following Zee’s ’QFT in a Nutshell’ and [84]
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use the same calculations as for the FRGE in Lorentzian setting (no gauge fixings or
ghosts here).

Z = eiW =

ż

Dφei
ş

d4xL+Jφ (7.179)

δW[J]

δJ
=ă φ ą (7.180)

Γ [ă φ ą] =W ´

ż

d4xJ ă φ ą

∣∣∣∣
x

(7.181)

J = ´
δΓ

δ ă φ ą

∣∣∣∣
x 1

(7.182)

(7.183)

The functional derivative wrt the expectation value of the scalar field is identified
with the derivative of the leading term of the effective action (derivative terms as the
expectation value should be constant), Γ „

ş

d4x ´ ν(ă φ ą) + ..., J(x 1) = ν 1 which
is equivalent for J Ñ 0 to the classical V 1 = 0|minimum. Weinberg concluded that the
potential can be written as sum of the classical potential plus the quantum correction
of order O( h) (recall in teh exponent we have i

 h
W by evaluating the loop correction.

For this we calculate W at leading order at ă φ ą.

W = S(ă φ ą) +

ż

d4xJ ă φ ą +
i h

2
Tr
 

log
(
B

2 + V 2
)(
|ăφą (7.184)

where the trace is again over all momenta and position space, in 4d
ş

d4x
ş

d4k
(2π)4 log(´k2 + V 2)|ăφą. We find the correction term of order  h of

´
i

2

ż

d4k

(2π)4
log
(

1´
V 2

k2

)
(7.185)

which I called previously the leading log type correction.
Substituting the action 7.178 after renormalisation via a cutoff,Λ2 = k2, andă φ ąÑ
φ with the condition (recall we have m2 = 0), d

2Veff
dφ2 |0 = 0 and we assume (the only

left dependence), V4eff |E = λE. We arrive at the result

Veff =
λ

4!
φ4 +

λ2

256π2
φ4

(
log
(
φ

E

)2

´
25
6

)
(7.186)

where the coupling is evaluated at the energy scale E. Under λE Ñ λ the correction
to the classical potential λ4!φ

4 is independent of the cutoff and of λ log
(
φ
E

)
order.

7.13.5 Ghost mass

Taking Niedermaier’s and A&B β-functions agree (but not with Codello&Percacci’s
FRGE treatment (2006)). For the action 1

2λC
2 ´ ω

3λR
2 + θ

λ
E with E being the Gauss-
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Bonnet term, the β-functions read

(4π)2k
dλ

dk
= (4π)2βλ = ´

133
10
λ2 (7.187)

(4π)2βω =
´25 + 1098ω+ 200ω2

60
λ (7.188)

(4π)βθ =
1

45
(56´ 171θ)λ (7.189)

and a stable FP exists for ω1,ω2 = ´5.47,´0.0229 we will use the second one,θ˚ =
0.327. Percacci gives a factor of 7

90 in front of the θ β-function, the treatment (gauge
and cutoff choice) does matter for the FP, but not much. The mass of the ghost is given
by m2

2 = λ
16πG . The result differs quite a lot from Benedetti, Machado & Saueressig

(2009) and their FRGE treatment. Presicesly, let us finally evaluate the Lagrangian
ż

d4x
?
g

(
´
k2

g

(
2λk2

´ R
)
´
C2

2σ
+
w

3σ

)
(7.190)

with corresponding β-functions

(4π)2k
dσ

dk
= (4π)2βσ = ´

133
10

2

(4π)2βω =
´25 + 1098ω+ 200ω2

60
(7.191)

I want to investigate the theory away from the FP withω˚ = ´0.0229. In this notation
we know that the mass is m2

2
σk2

g
. I need to identify some scale, the Hubble scale is

a viable choice. We know that under k Ñ 0 the first two terms should approach

„
m2
p

16π(2Λ´R) and for constantH during inflation, a(t) = eHt, we can find a solution
of the eoms as in [86] and with the equations for the dimensionless couplings, of order
H2 = λ

3k
2 (which is true, since H „ k at the FP), hence, we can choose m2

2
H2 „

σ
gλ

. We
should evaluate the upper bound for σwhich will depend on the observations, inflation
produces perturbations,H 1(t) = H+δH(t) and following Weinberg’s analysis of the de
Sitter eom with eζHt instabilities in de Sitter are given, we get ζ2 +3ζ = A ăă 1 (for
inflation we need „ 1

20) with the positive value giving the instability. Following some

algebra with the couplings we get the constraint 1
20 „ (8π)´1s

m2
p

H2 (see also Weinberg, ζ
corresponds to the slowly growing perturbation which ends the exponential expansion
after 3

A
„ 60 e-foldings). Thus, we conclude m2

2 „
H2(´2ω˚)

N
„ 0.0276 The energy

scale at inflation is bigger than the ghost’s mass. We also seen that a naive treatment
of the running of the C2 term is AF and we have seen that s „ 10´10 during inflation.
See also 5.6.5.
(to be continued)
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